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FOREWORD

Science, in general, and physics, in particular, have evolved out of man’s quest to know beyond
unknowns. Matter, radiation and their mutual interactions are basically studied in physics.
Essentially, this is an experimental science. By observing appropriate phenomena in nature one
arrives at a set of rules which goes to establish some basic fundamental concepts. Entire physics
rests on them Mere knowledge of them is however not enough, Ability to apply them to real
day-to-day problems is required. Prof Irodov’s book contains one such set of numerical
exercises spread over a wide spectrum of physical disciplines. Some of the problems of the book
fong appeared to be notortous to pose serious challenges to students as well as to their teachers.
This book by Prof. Singh on the solutions of problems of Irodov’s book, at the outset, seems
to remove the sense of awe which at one time prevailed. Traditionally a difficult exercise to
solve continues to draw the attention of concerned persons over a sufficiently long time, Once
a logical solution for it becomes available, the difficulties associated with its solutions are
forgotten very soon. This statement is not only valid for the solutions of simple physical problems
but also to various physical phenomena.

Nevertheless, Prof. Singh’s attempt to write a book of this magnitude deserves an all out
praise. His ways of solving problems are elegant, straight forward, simple and direct. By writing
this book he has definitely contributed to the cause of physics education. A word of advice to
its users is however necessary. The solution to a particular problem as given in this book is
never to be consulted unless an all out effort in solving it independently has been already made.
Only by such judicious uses of this book one would be able to reap better benefits out of it.

As a teacher who has taught physics and who has been in touch with physics curricula
at 1.1 T., Delhi for over thirty vears, I earnestly feel that this book will certainly be of benefit
to younger students in their formative years.

Dr. Dilip Kumar Roy

Professor of Physics

Indian Institute of Technology, Delhi
New Dethi-110016.



FOREWORD

A.proper understanding of the physical laws and principles that govern nature require
solutions of related problems which exemplify the principle in question and leads to a
better grasp of the principles involved. It is only through experiments or through solutions
of multifarious problem-oriented questions can a student master the intricacies and fall
outs of a physical law. According to Ira M. Freeman, professor of physics of the state
university of new Jersy at Rutgers and author of ‘‘physic--principles and Insights’” --
““In certain situations mathematical formulation actually promotes intuitive understand-
ing....... Sometimes a mathematical formulation is not feasible, so that ordinary language
must take the place of mathematics in both roles. However, Mathematics is far more
rigorous and its concepts more precise than those of language. Any science that is able
to make extensive use of mathematical symbolism and procedures is justly called an exact
science’’. LE. Irodov’s problems in General Physics fulfills such a need. This book
originally published in Russia contains about 1900 problems on mechanics, thermody-
namics, molecular physics, electrodynamics, waves and oscillations, optics, atomic and
nuclear physics. The book has survived the test of class room for many years as is evident
from its number of reprint editions, which have appeared since the first English edition
of 1981, including an Indian Edition at affordable price for Indian students.

Abhay Kumar Singh’s present book containing solutions to Dr. LE. Irodov’s Problems
in General Physics is a welcome attempt to develop a student’s problem solving skills.
The book should be very useful for the students studying a general course in physics and
also in developing their skills to answer questions normally encountered in national level
entrance examinations conducted each year by various bodies for admissions to profes-
stonal colleges in science and technology,

B.P. PAL
Professor of Physics
LLT., Delhi



PREFACE TO THE SECOND EDITION

Nothing succeeds like success, they say. Now, consequent upon the warm
welcome on the part of students and the teaching fraternity this revised and
enlarged edition of this volume is before you. In order to make it more up-to-date
and viable, a large number of problems have been streamlined with special focus
on the complicated and ticklish ones, 1o cater to the needs of the aspiring students,

I extend my deep sense of gratitude to all those who have directly or
indirectly engineered the cause of its existing status in the book world.

Patna
June 1997 Abhay Kumar Singh



PREFACE TO THE FIRST EDITION

When you invisage to write a book of solutions to problems, one pertinent question crops up
in the mind that—why solution! Is this to prove one’s erudition? My only defence against
this is that the solution is a challenge to save the scientific man hours by channelizing thoughts
in a right direction.

The book entitled “Problems in General Physics” authored by LE. Irodov (a noted
Russian physicist and mathematician} contains 1877 intriguing problems divided into six
chapters.

After the acceptance of my first book “Problems in Physics”, published by Wiley
Eastern Limited, [ have got the courage to acknowledge the fact that good and honest
ultimately win in the market place. This stimulation provided me insight to come wp with my
second attempt—‘Solutions to LE. Irodov’s Problems in General Physics.”

This first volume encompasses solutions of first three chapters containing 1052
problems. Although a large number of problems can be solved by different methods, I have
adopted standard methods and in many of the probiems with helping hints for other methods.

In the solutions of chapter three, the emf of a cell is represented by & (xi) in contrast
to the notation used in figures and in the problem book, due to some printing difficulty.

I am thankful to my students Mr. Omprakash, Miss Neera and Miss Punam for their
valuable co-operation even in my hard days while authoring the present book. I am also
thankful to my younger sister Prof. Ranju Singh, my yohnger brother Mr. Ratan Kumar Singh,
my junior friend Miss Anupama Bharti, other well wishers and friends for their emotional
support. At last and above all I am grateful to my Ma and Pappaji for their blessings and
encouragement,

ABHAY KUMAR SINGH
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PART ONE

PHYSICAL FUNDAMENTALS OF MECHANICS

1.1

KINEMATICS

11 Let v, be the stresm velocity and v/ the velocity of motorboat with respect to water. The

motorboat reached point B while going downstream with velocity (vo + v') and then returned
with velocity (' - v,) and passed the raft at point C. Let £ be the time for the raft (which
flows with stream with velocity v ) to move from point A to C, during which the motorboat
moves from A to B and then from B 1w C.

Therefore

LR S Ll U Vst V') ===

vy v -v) A~ D) B —Vp
On solving we get v = 37 C -

1.2 Let s be the total distance traversed by the point and #, the time taken to cover half the

distance. Further let 2¢ be the time to cover the rest half of the distance.
5

5

Therefore 5= Yoty oOr L= —2——;’; {1)
5 5

and 5™ (vi+v)t or U= v, @A)

Hence the sought average velocity
s 2v, (v +v)

s
= tl+2t‘ {s/2vﬁ]+[s/{v1+v,)]‘ VitV 2V,

1.3 As the car starts from rest and finally comes to a stop, and the rate of acceleration and

deceleration are equal, the distances as well as the times taken are same in these phases
of motion.
Let At be the time for which the car moves uniformiy. Then the acceleration / deceleration
T~ At
2

time is each. So,



[ M

3
<V>T= 2 }’-w(tum) EwwﬁwAﬂAt
2 4 j :
7 4<y>T

or Arlw g2
w

Hence A= ¢ 1—4<V>
W

{a) Sought average velocity Sm

s 200cm ¥4
v>-t-= 208 =10 cm/s Y F

o

(b) For the maximum velocity, "g“ should be 4
10 414

. ds .
maximum. From the figure 7 15 maximum for 3 7

all points on the line ac, thus the sought -
maximum velocity becomes average velocity Lt
for the line ac and is equal to : 0 10 20¢,§

be ioﬂmﬂzscm/s

ab 4s

(c) Time ¢, should be such that corresponding to it the slope % should pass through the

point O (origin), to satisfy the relationship %s -!-s» From figure the tangent at point d
0

passes through the origin and thus corresponding time f= f,= 165,

1.5 Let the particles collide at the point A (Fig.), whose position vector is 7y (say). If £ be the

1.6

time taken by each particle to reach at point A, from triangle law of vector addition :
il — —i — bt
r3==r1+vit= r2+V2t

A —
0,  F-Fm G- @ 4 Vit
|- 7]
therefore, = —=5—=37 2 - —
[v2-vii i Wt
From Egs. (1) and (2)
Ty = Py Vo o Py ) wrfgumigen
1o 2 l"z“’;l 0 ) >
T L S A - X
of, gy = T=%—=%7, Which is the sought relationship.
Iri-rl vy=vl iy
We -have
— —
i (1)

From the vector diagzam [of Eq. (1)] and using properties of iriangle



1.7

Vo= ‘/vg-& v+ 2vyveos @ = 39.7 km/br (2)

—
v v . vsin ]
d = - LEne 4
an sin{r-g) sinb or, sin 8 v v
- sin~1 vsing
or 0= sin " 4) P <
Using (2) and putting the values of v and d i ‘Tf
0

6= 19.1°
Let one of the swimmer (say 1) cross the river along AB, which is obviously the shoriest
path. Time taken to cross the river by the swimmer 1.

ty = ——-*“4-"-—, (where AB = d is the width of the river) {n
r2 2
VvVii-yg
For the other swimmer (say 2), which follows the quickest -path, the time taken 10
cross the river.

d
b= @
B . ’ B x »C
T S
”
VO ; - /’/ -
d S d P Vo 7 —>
‘}1 — 4 g
v > v —
l ’ VZ -—
A A i’
In the time £, drifting of the swimmer 2, becomes
v,
x= vyl v—?d, (using Eq. 2) 3
If ¢, be the time for swimmer 2 to walk the distance x to come from C to B (Fig.), then
x_ Yod . 3 4
tym = (using Eq. 3) 4)
According to the problem £, = f; 47y
or _d___ d.nd
’ v Vv
v:2 - Vg
On solving we get
Vo
= T = 3 km/br.
"2



4

18

19

1.10

Let ! be the distance covered by the boat A along the river as well as by the boat B acxc
the river. Let v, be the stream velocity and v’ the velocity of each boat with respect
water. Thercfore time taken by the boat A in its journey
! !
W TRtV Ty,

. ! I 2
and for the boat B Lo W e 4 secsmenee e oo
By v’z—;g v v'z—l.r‘.,2 v v’z»vo2

Hence, f = v = 1 where 1) = L
’ g Vv'z—w_% Vri-1 Y
Or substitution L /tg= 18

Let v, be the stream velocity and v the velocity of boat with respect to water. A
v,
;?—- n= 2> 0, some drifting of boat is inevitable.

Let v~ make an angle 0 with flow direction. {Fig.), then the time taken to cross the rive

d . . .
P= S5 (where d is the width of the river)

In this time interval, the drifting of the boat
x= (v'cosB+vy)t

, d ,
= (v cos6+v0)v,sina-(cot9+nmsw9)d T
A -
For x_,, (minimum drifting) i "J —_—
d 8 8) = 0, which yield Yol »
de{mt + 7 cosec B) = §, which yields V’
CosDm wm &
n 2 » X
Hence, 0= 120° 0

The solution of this problem becomes simple in the frame attached with one of the bodies.
Let the body thrown straight up be 1 and the other body be 2, then for the body 1 in the
frame of 2 from the kinematic equation for constant acceleration :

e i 1. 2
So, Fﬁ- 5';(12)4 {because Wn' 0 and 5':(12)- 0
o, |ipl= [vguy it )

But  |¥y|= [¥el= v
So, from properties of triangle

Vo(iz) * \/ i+ Ve — 2 vy vy 008 (/2 - 6;)
Hence, the sought distance

|75 l= vV 2(1 ~sin ) 1= 22m.



5

111 Let the velocitics of the paricles (say ¥, and ¥, ) becomes mutually perpendicuiar after

112

time . Then their velocitis become
—t —t g i ! - —
V, m VgL vy = Vo b gL (1) A

it

it -
As V] 1LV, so, vy "v; =0

o, (Vi+g1) (v, +Et)=0

2 .

or —v Vg t= 0 i
172 gz Vé y 7 Vzt"?“‘““"‘"“t phomm—
Hence, t= -——legv 3

1
Now form the Eq. 7y = F&mﬂ'?&mtvz-ﬁ:ztz

|Fiz]= IFO’(IE}I‘! (because here Wiz = O and F&m- 0

Hence the sought djstance

v+,
Jrpl= e Vviv, (as]vgyl=vitv)

From the symmetry of the problem all the three points are always located at the vertices
of cquilateral triangles of varying side length and finally meet at the centriod of the initial
equilateral triangle whose side length is 4, in the sought time interval (say 7).

-
Vs

.

2 5 >
/_Uy: 120 3 7
Vy 2

Let us consider an arbitrary equilateral triangie
of edge length ! (say).

Then the rate by which 1 approaches 2, 2 approches 3, and 3 approches 1, becomes :

= ycos [R
dr 3

1] I3
On integrating : fau-Z Ja
a 0

a= g-vr S0 tm —
2 v
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1.4

Let us locate the points A and B at an arbitrary instant of time (Fig.).
If A and B are separated by the distance s at this moment, then the points converge or

. . . =ds
point A approaches B with velocity — = v — 1 cos o where angle o varies with time.

dt
On intergating, TVd
2 r ‘L’{:r'ﬂ Q
rd
~fds-f(v——ucosa)dt, al
1 o - e
(where T is the sought time.) v /"
7 { ’
or qu(v-uoosa)dt ey A
0

As both A and B cover the same distance in x-direction during the sought time interval,
so the other condition which is required, can be obtained by the equation

Ax = f v, dt
T
So, uT= [veosads @
o
. ul
Solving (1) and (2}, we get T'm 5y
One can see that if u= v, or u<v, point A cannot catch B.
In the reference frame fixed to the train, the distance between the two events is obviously

equal to L Suppose the train starts moving at time ¢ = 0 in the positive x direction and
take the origin (x = 0) at the head-light of the train at £« 0. Then the coordinate of first

event in the carth’s frame is
1
xl had ‘i"“’tz
and similarly the coordinate of the second event is
Xy —;-w(t+1)2-l

The distance between the two events is obviously.
X —xym l-wr(t+v/2) =0-242 km

in the reference frame fixed on the earth..

For the two events to occur at the same point in the reference frame K, moving with
constant velocity V relative to the earth, the distance travelled by the frame in the time
interval T must be equal to the above distance.

Thus Viml-we(i+1/2)
So, V-;f_-—w{t+1:/2)-4-03 m/s
The frame K must clearly be moving in a direction opposite to the train so that if (for

example) the origin of the frame coincides with the point x; on the earth at time £, il
coincides with the point x, at time £+ 7T.
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1.16

7

(a) One good way te solve the problem is to work in the clevator’s frame having the
observer at its bottom (Fig.).

Let us denote the separation between floor and celing by A = 27 m. and the acceleration
of the elevator by w= 12 m/s?
From the kinematical formula

1

y= ,\,r(,rnq,yaw—-z—wyt2 {n J\yf
Here  y= 0,y,= +h, vy, = 0
and Wy = Woiy) ™ Welety) I
- (-g)- (W= = (g+W) h=27m
Se, 0= h+-§-{—-(g+w)}t2 , l Tw:z-zm/s"

o, t=v Zh = (7s.
g+w

(b) At the moment the bolt loses contact with the elevator, it has already aquired the
velocity equal to elevatm}given by :
vyw (12) (2) = 2:4m/s
In the reference frame attached with the elevator shaft
(ground) and pointing the y-axis upward, we have for
the displacement of the bolt, Vo i

1
Ay = voyt+-2~wy12 1 ¥

mvyt+ %(—g)t2

or, Ay = (2:4) (07) + %(-. 98) (07 = ~07m.

Hence the bolt comes down or displaces downward relative to the point, when it loses
contact with the elevator by the amount 0-7 m (Fig.).

Obviously the total distance covered by the bolt during its free fall time

(2:9)°
98)

ayl+2(2) - 07
s=|Ay|+ 5g)= 07+

m= 1-3m.

Let the particle 1 and 2 be at points B and A at £= 0 at the distances /; and [, from
intersection point O.

1et us fix the inertial frame with the particle 2. Now the particle 1 moves in relative to
this reference frame with a relative velocity v}, = ¥} — F; and its trajectory is the straight
line BP. Obviously, the minimum distance between the particles is equal to the length of
the perpendicular AP dropped from point A on to the straight line BP (Fig.).
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A A
L i
. 1 %
i ->
l@ v! - '
B> L d K
f‘*,‘;—-—— LW —>
From Fig. (b), Vip= ¥V v21+;22, and tan O = —33- (1)
2

The shortest distarice
AP= AMsin 6= (OA ~ OM)sin O = {I, - [, cot 6)sin &

v\ v vh=-wi .
or AP = o o - using 1
(’2 lvl)\/vgﬂg rpre S
The sought time can be obtained directly from the condition that (/, - v, t)2 + (- v, t)2
Lv.+Lv
is minimum. This gives ¢ = thy .
Vi 4V,

Let the car tumn off the highway at a distance x from the point D.
So, CD = x, and if the speed of the car in the field is v, then the time taken by the car
to cover the distance AC = AD - x on the highway

AD ~-x

£ - — 1
oy W ( «—X —>p
and the time taken to travel the distance CB A
in the field
ViTed
Bym 3 <3\
E
So, the total time elapsed to move the car from point A 10 B ) A
AD-x VI%+2
te f+1y= +
nv v

For ¢ to be minimum \ B

dt 1 x

—m ) of —| -+ —pugmmmy |= 0

dx v [ ViZted ]
or 7]212-= Pyx® or x= !
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L18 To plot x(#), s(f) and w, (#) let us partion the given plot v_(f) into five segments (for
detailed analysis) as shown in the figure.
Forthe partoa:w = 1 and v = t= v

' tz Vx a b
Thus, Ax, (1) = fvxdta- .{drn 75 n 1 el
. M AN A
Putting = 1, we get, Ax; = 5= -é-unit -1
For the part ab : -2 a
w,= O and v, = v= constant= 1
t
Thus sz(t)-fvxdt-fdts (t=1)= 5, ()
1
Putting t= 3, Ax, = 5, = 2 unit

Forthepartbd: wo= 1l and vy = 1~-(-3)=4-f)= v

i

Thus Ax3(:)-f(4-:)dt-4:-5;-3~2§~- 50
3
Putting =4, Axy= xy= —;-um't
For the part 44 : v,=-1land v,= ~(1-4)=4-1
So, ve |v i=1~4 for >4
y 2

Thus Ax4(:)=f(1—-t)d:-=4t—~£2~~8
Putting t= g, Ax,= -1

‘
Similarly s4(t)~f§vxtdt=f(t—4)dt- %2-—41‘1-8
Putting tx 6, 5, = let:it

For the part d 7 ; W= 2and vyw ~2+2(~6)m 2(1~7)

v=|v,|=2(7-1) for <7
6

Now, M ()= [2 (=Tdim - 141448
B - 4
Putting t= 4, Arg= -1
3
Similarly ssW= [207-Ddt=140-17-48
4
Putting t=7, 5o 1

On the basis of these obtained expressions w, (¢), x {£) and s {f} plots can be easily plotted
as shown in the figure of answershect.



10

1.19 (a) Mean velocity

Total distance covered

Time
s nR

t

elapsed
S0em/s (1) Vo

(b} Modulus of mean velocity vector i

Ar 2R

[<v>}= - T

At T

= 32em/s (2)

(c) Let the point moves from i o f along the half circle (Fig.) and v; and v be the spe
at the points respectively.

We have " w,

or, v= vy +w, ! (as w, is conslant, according to the problem)
4
f (vo + w, 1) dt
” g+ (g ewt)  vyrv

So, vy =

So, from (1) and (3)

: = 2 )
_fd:
0

VotV xR

2 1

Now the modulus of the mean vector of total acceleration

|<Tv’>|-

Using (4) in (5), we get :

1.20 (a) we have
So,

and

(b} From the equation

i

So, the sought time Ar=

As

So,

VeVl vp+v
[ifﬂ[a; _‘OE- 01: (see Fig)

~ |<W>|--———-—23R
)
F=at{l-af)
— dr
Ve —= all-2af)
W Q_E._ -2aa
dt

r=0,att=0and alsoat = At = é;

a(l-2a) forr:saml-g

a({Zat~1) fort>~2—1;

(3

6]
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Hence, the sought distance
1la Ve

s= fvdt=f a(l-2addt+ f aZoar-1dr
[ 12a
Simplifying, we get, s= —2%
{a) As the particle leaves the origin at r= 0

So, Ax= x = fvx dr
¢

As = ?5';(1 _—),
T

where v, is directed towards the +ve x-axis

t
=y fl-—
So, V.= ¥ ( ':)

From (1) and (2},
x‘f"o(l —%)dw "o‘(l"i)

0
Hence x coordinate of the particle at 1= 6s.

X = 10x6(1-~—-§—--)-= 2dem = 324 m

2x5
Similarly at t=10s
10
x= IOxIO(I—ZXS)sﬂ
and at t=20s
x= 10x20{1-=22 )= ~200cm=-2m
2x5

i1

iy

&)

(b} At the moments the particle is at 2 distance of 10 em from the ongin, x = = 10 cm,

Putting x= +101in Eq. (3)
!

0= 10:(1———-) o, t°=10t+10= 0,

10

So, t=

2
Now putting x= ~-10in Eqn (3)
'
~10= 10 (1 - 10),
On solving, t=5% V35 s

As t cannot be negative, so,

t=(5+V35 )s

- 10¢V100~40==5¢\/‘f§s
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1.22

Hence the particle is at a distance of 10 cm from the origin at three moments of time :

t= 52 vi% s 5+vV3) s

(c) We have Vo Q(l - %)

vﬂ(l-f-) forrs <
So, yu V)=

vy _1) fort>x

L2
T
So s= vﬂ( ) for t<t = vyt (1 ~41)

and s-fvo(l—-%)dté-fvo(i—«i)dt for t>x
]

T

o © %y -

- vpT[l+(1~%)%)/2 for t>1
4

e

0

(&)

)]

And fort= 8s
5 8
o Ja0(1-Gas frof- 1)
5 5
i 5
On integrating and simplifying, we get
s= 34 cm,
On the basis of Eqs. (3) and (4), x {{} and 5 (#) plots can be drawn as shown in the answer
sheet.
As particle is in unidirectional motion it is directed along the x-axis all the time. As at
t=0,x= 0
So, Ax = x= 5 and g}-’--w
dt
Therefore, ve aVr = vy
of wedl_ o d5_ o
’ 2Vs dt 2vs
av aavs o
T 2vs 2vs 2
2
v o
As weaT T

2 2
On integrating, f dv = f % dt ot, ve= %— t
0 0

2



1.23

1.24

(b) Let s be the time to cover first s m of the path. From the Eq.

s=fvdr

2 2 .2
o o~ 1 .
s—f > dt = > 5 (using 2)
0
2
or [= —¥Ys§
a

According to the problem

vdv

- aVv (as v decreases with time)
" 5
or, - f YWadv=a f ds
VO 0
On integrating we get 5= _g_vg/z

3a

Again according to the problem

_ﬂ, avv or —ﬂ- adt
dt Vv
0
dv
or, fo’ aldt
Vo
v
Thus t= 20
a
(a) As F=atizbe’j”
So, x-aar,ym-bt2
2
and therefore y = _-:_E_)_fx__

a

13

&)
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1.28

which is Eq. of a parabola, whose graph is shown in the Fig.

(b) As F=atinmbe?j”
y= dt-a:-thj )
So, v=Va*(-2bt¥ =Va’+4b"¢"
Diff. Eq. (1) wrt. time, we get
- dy -
W dr#—Zb
So, [ W]ewse2b

VW_(al=2b1])(~2b6)7
vw (\/a2+4b2t2)2b
2b1t

o, COS O = — ey ,
Yat+4bet?

{c) cos O =

&
50, tan o = 5"5"?

or, o= lap © 2.
’ - 2bt

{d) The mean velocity vector

I

fi‘»“’d: f(ai>2bejYar
[L]

<V > = aizbtj”
Jat 4
Hence, ]<}7’>lu VaZ+ (=507 = VaZ+b%t?
(2) We have
x=atand y= at{l-ar) (1)

Hence, y { x ) becomes,

ax oax o2
= el § ] i f o g e bol
y=- ( p ) X=X {parabola)

(b} Dirferentiating Eq. (1) we get
v,= aand vy=a(l-2ar) (2)

x
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So, V= \/-.»fﬂwvyz==a\/i-‘1‘{1—20u)2
Diff. Eq. (2) with respect to time

w,=0and w,=-2aa

So, w-wai» wfaZaa
{c) From Egs. (2) and (3)
We have V-aﬁa(i—Zat)rand W 2(1{1?
So cos & 1 vw ~a(l-2Zaf)2aa

’ 4°V2 T vw aV1i+(1-20tY 2aa
On simplifying. 1-2afy= %1
As, tom O, f, ,.,l

¢ L 1] a

Differentiating motion law : x= asinw?, y= a{l -coswt), with respect to time,
V,= 4WCcosOF, v, = aosinwf

So, V= awcoswt [+ amsinwt}'"’ (1)
and v= aw®= Const {2)
Differentiating Eq. (1) with respect to time

- d ;. 2

2 . ™ rad
Wa —r= —ae sinoti+an”cos o) {3)

{a) The distance s traversed by the point during the time ¥t is given by
5= ]vdt-fawdt- awt (using2)}
0 0

(b) Taking inner product of ¥ and w
2

. e . Y 2 . . -
Weget, v-w=(awcosotitawsinotj){awsinof(-i)+aw cosot-j)
So, P W= —a® @®sin of cos @f + ¢° o’ sin wf cos wf = 0
: . . n
Thus, 'L W, i.c., the angle between velocity vector and acceleration vector equals s

Accordiing to the problem -
W= w(-j)

dv, dv,
il -t -
So, W= 0 and w, o w )
Differentiating Eq. of trajectory, y= ax ~ bx? with respect to time
dy adx dx
d " @ @
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1.28

. &
dt

So, %

xwl xm0

_Again differentiating with respect to time

- dr de?

2 2 2 2
d°y _ad X _9p dx _bem
dr? di? dt

2
or, -w:—a(G)—Zb(%f—) ~2bx(0) (using 1)

dx w . .

or, Z V 25 {using 1) C
1 / W

= —— (4
e D 2b

Hence, the velocity of the particle at the origin

< 7
dx) (Y N[l
V= V( dt )x-0+( dt )x—ﬂ 2b ta 2b (using Eqas (3) and (4))
Hence, v W

As the body is under gravity of constant accelration g, it’s velocity vector and displacemen
vectors are:

Using (3) in (2) 2y

P B 5
and A= P Gtz g (Fm Oate = 0) @
So, <v> over the first ¢ seconds

<> = AT Vot g (3)
At T2
Hence from Eg. (3), <v> over the first ¢ seconds 4 y_
o F
wWh =y + 2 (4
[ 2 %
For evaluating £, take
Vv = (3;'+§’:)-(Fg+§’r)= v%+2{ﬁ-§?t+g2r2 of
s 2 59 (t=2) ~
or, vav0+(ve-§yt+gt >
0 (t=0) p&c
But we have v= yjat (= 0 and Vo

Also at ¢ = % (Fig.) (also from energy conservation)
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17
Hence using this propety in Eq. (5)
vam vi+2(vpE) T N

2, 8)

As T2 0, 50, T= =~y
g
Putting this value of v in Eq. (4), the average velocity over the time of flight
-

—
<W>= v -g

The body thrown in air with velocity v, at an angle o from the horizontal lands at point
P on the Earth’s surface at same horizontal level (Fig.). The point of projection is taken
as origin, so, Ax = x and Ay=y

a) From the Eq. Ay= v +-!»wt2
Ovt 2y

1 Y4
Osvosina'c—igrz VO

. . 2vgsina
As = 0, s0, time of motion t= ——— 1

g |H

(b) At the maximum height of ascent, v, = 0 ya ! p
3 [
so, from the Eq. vﬁz vgy+2wyAy O }.—-R/z-bi x
'-—'- i WY\
W=g

0= (vosina)z—ZgH

2.2
Vpsmoa

28
During the time of motion the net horizontal displacement or horizontal range, will be
obtained by the equation

Hence maximum height H =

1 2
Ar= vy r+=w, T

2
2.

1 2 vysin2a
or, R= vocosa‘s-—z—(o)t = Vo8 QLT e ————
when R=H

2 i 2 )
vpsina  vpsin“a

of tana = 4, 80, A= tan" ' 4
g 2g

(¢} For the body, x () and y (1) are
X= Vycos ot 3]
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1.3

and Y= vysinot - igf {2)
Hence putting the value of ¢ from (1) into (2) we get,
2 2
y= ysina = —lg = = xtan o = —F e
vepeosa] 27 lvycosa

2 vg cos’ o’
Which is the sought equation of trajectory i.e. y (x)
{d) As the body thrown in air follows a curve, it has some normal acceleration at all the
moments of time during it’s motion in air.
At the initial point (x = 0,y = (), from the equation :
2
- %, (where R is the radius of curvature)

W

n
2 2

"0 (sec Fig) or Ry= —2
gcosa=R0 see Fig.) or Ry= seos

At the peak point v, = 0, v= v_=v,;cos o and the angential acceleration is zero.

Now from the Eg. W, = —

Note : We may use the formula of curvature radius of a trajectory y(x), to solve
part (d),

n 3
3
. [1+(dyldx) ]
[#72]
We have, v, = vycos q, vy;-* v Sin o ~ gt
As vt u, all the moments of time.
Thus V= v,2—2gtv0sina+g2t2
dv, .
Now, W= = 5::2;( = '(gztugvosma)

g .
e =V, —pfm —g L
,(osma g1t g :

14
Hence [w, | = g—l——f—i-

Now w=V§- 2 g gz—y—

V,
x

or Wy 8- (where ve= Vv -,
13
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As vt 3‘, during time of motion

v,

W, = W, = _gJ_'.
v

On the basis of obtaincd expressions or facts the sought plots can be drawn as shown in
the figure of answer sheet.

The ball strikes the inclined plane (Ox) at point O (origin) with velocity vy = V 2gh (1)
As the ball elastically rebounds, it recalls with same velocity v, at the same angle o from

the normal or yaxis (Fig.). Let the ball strikes the incline second time at P, which is at
a distance { (say) from the point O, along the incline. From the equation

1 2
Y= Vgl 5wyt

0= v(,coson:———;—gccscct2

where T is the time of motion of ball in air
while moving from O to P.

2y,
As T= 0, so,‘cs——;- )

Now from the equation.

1 2
X = V&tf'i‘mwxf

2

2

. 1.
[= vnsmat-v-«é»gsma‘c

2viy 1 2v,
50, I= vysinoa [—| + —gsino | —
° (8)2g (g

4v§sina

- —— (using 2
z (using 2}

Hence the sought distance, /= 5%2-@-2= 8asina (Using Eq. 1)

Total {ime of motion

2v,sina . g 981
T= ——— Of sino= 2v0=2x240 (1)
and horizontal range
R 5100 85

R= vycosat or cosaa-;’-;_;u S T )

From Egs. (1) and (2)
©87< (87
(4807  (41%*

On simplifying v - 2400 %% + 1083750 = 0
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1.33

.34

Solving for 2 we get :

P 2400 £ V 1425000 2400 + 1194
- 2 =

2

Thus T= 42395 = (-71 min and
T= 24553 = (+41 min depending on the angle .

Let the shells collide at the point P (x, v). If the first shell takes ¢ s to collide with second
and At be the time interval between the firings, then

x= vyeos Oyt = vocusez(t-—Ar) ¢y

and y= vsin@, I_E 2 “y
. 1 —
avosmez(t—At)-—-i—g(t-At)z @ |
From Ea. (1 At cos B, 3 (Q’.}y.)
rom Eq. (1) ¢= cos B, ~ cos 8, ) p
From Egs. (2) and (3) & ©
2 vy sin (8, - 6 >
At = Yosin (6, - 0) as At= 0 0

g (cos 0, + cos By)

According to the problem
(a) %s Vo Of dy= vydf

¥
Integrating f dy = v, f dt or y= vt ¢y
dx :
And also we have e o de= aydi= avytdt (using 1)
x ] 1 2
So, fd.x= avof:dt, of, x= iavotza m%(using 1
2 PARA
0 0
(b) According to the problem
v,= vpand v, = ay 2
So, Ve \/vz+v2-\/v§+a2y2

Theref: ,,_._. 2y & dy
ereiore w mdf 'JW

Diff. Eq. (2) with respect to time.

dv v
= w = k== ala
=W 0 and = We= A=Yy

So, W#thlm a vy
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N v supwe 28 2.2 a* P . avy
Hence w, ) Va ‘% 1+ (ay/v0)2 V14 iav/v (ay /vu)"‘z“

(a) The velocity vector of the particie
Vem ai+brj

& bx

So, ';;' = m
From (1) facmafar o xua @)
f 0
And dy= bxdt= batdt
¥ i
Integrating f dy = abftdt o, y= %ab t? 3)
b
From Egs. (2) and (3), we get, y= i—;f’ (4
() The curvature radius of trajectory y (x) is :
3
1+ @yra9? |
5
|d2 yldﬂ ©)
Let us differentiate the path Eq. y = -zé—x with respect to x,

dx a and aé a
From Egs. (5) and (6), the sought curvature radius :
3

sl

In accordance with the problem

—
w,=a-%
But W, = Ed.“_i_v_ or vdv= w,ds
So, vdve (@-T)ds= a-dr
T — . s
or, vdv= ai-dr= adx (because g is directed towards the x-axis)
14 x

So, f vy = afdx
o

Q

Hence V= 2ax of, v= V2 ax
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1.38

The velocity of the particle v= at
So, Z=- e
2 2.2
And S AN X S =
Wy F R (using v = ar)
From s-fvdt
1
1 2
2akn=alvdi= -z-at
0
2
So, dnnm_ 1
a R
From Egs. (2} and (3) w, = 4mwan
Hence w= V w?+w?
-V a§+(4ﬂta?})i =gV 14-1,6?7]i = 0-8 m/s?
According to the problem
Fw = fw,]
—-dv
For v(n, & -
Integrating this equation from vo<x vs v and 0 ¢ 1
¥ t
dv 1 Yo
'f b ifa o - e
A 8 + R
vdv v . . ;
Noiw for v (s), % R’ Integrating this equation from vys vs v and U< s 5
v 5
dv 1 v s
80, fv--R ds or, lnvos—-R
Vo o
Hence V= voe“'m

(b) The normal acceleration of the point

2 v2 - A5/R
V e '
Wam g = TR (sing )

And as accordance with the problem
jw, = |w,| and wou, Lw, u,

2

2
Yo -owr v
50, w==\/'2*wn==\/’f~§*e s\/f"R“

M)
2

€)

@
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From the equation v= avs
dv a ds a a
MGt Vs a2 g
v s
v 7= R

As w, is a positive constant, the speed of the particle increases with time, and the tangential
acceleration vector and velocity vector coincides in direction.

A
Hence the angle between v and w is equal to between w, i an W, and o can be found

Il d’s/R_ 25
by means of the formula : ang = -
y wl™ &2 "R

From the equation = gsinmt

L Ve 4GOS 0T
dt

So, w= & -~aw’sinwt, and (1)

dt

vV dolcsior
W om0 @
(a) Atthe point /= O,sinw¢= 0 and coswrm = 1 s0, ax= 0, 7 elc.

2 2

©

Hence W W, =

Similarly atl= = a, sinmf= = 1 and coswi= 0, so, w,= 0

Hence wm |w,|= an’

As w,= a and at t= 0, the point is at rest

So, v () and s(f) are, v= af and 5= %atz {1)

Let R be the curvature radius, then
2
v.ooat” %2 2 as
Wo= o= g {using 1)

But according to the problem

w, bt
2.2 2 2
So, brt= 5’«ﬁ‘-~ or, R= f;'f"‘ 59;; (using 1) @

Therefore w= \/w?+nﬁ = \/a2+(2asz)2 - \/a2+(4bs2/a2)2(using 2)

Hence w= aV 1+(4bs2fa3)2
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1.42 (a) Let us differcntiate twice the path equation y (x) with respect to time.

2 2
RPN 5 JAPYR - A N
I 2axdt 22 2a ar +xdt2
Since the particie moves uniformly, its acceleration at all points of the path is normal and
at the point x = 0 it coincides with the direction of derivative d 2 y/dt 2 Keeping in mind

that at the point x = 0, % -y
We get W ‘—12—32 =2avi=w
dt x= 0
2
1
S - 2. - e
0, wo= 2av RO R e

Note that we can also calculate it from the formula of problem {1.35 b)
(b) Differentiating the equation of the trajectory with respect to time we see that
2 dy |
bx — iy + a y T {1)
which implies that the vector (b xi+ a yﬂ is normal to the velocity vector

V*E;l'fd:

the normal and the normal component of acceleration is clearly

bx ,‘f,"f, + azy«f}r{

L (bx +ay )2

J~ which, of course, is along ihe tangent. Thus the former vactor is along

onusing w = w-n/|n)].Atx= 0, y=+ bandsoatx =0

-3
Differentiating (1)
dx dy g 2 _tfz
= 0
o) 3] (2
Also from (1) &-;i Datx= 0
So (%) = % v (since tangential velocity is constant = v }
Thus (%)n S -~b—2-v2
a
bV
and fw” - :2— 3

This gives R = a*/b.
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Let us fix the co-ordinate system at the point O as shown in the figure, such that the

radius vector 7 of point A makes an angle 8 with x axis at the moment shown.

Note that the radius vector of the particle A

rotates clockwise and we here take line ox 2s

reference ling, so in this case obviously the

. df .

angular velocity w= — taking

anticlockwise sense of angular displacement as

positive.

Also from the geometry of the triangle OAC
R r

sin®  sin{nx-~-20)

Let us write,

or, rm 2RcosB.

7= rcos@;3rsinBj= 2Rcos’87% Rsin20j"
Differentiating with respect to time.

%—- or ¥ ZRZCOSB(-smB) ;+2Rcos28de_’

or, V= ZR(:-g-‘-g-

)[smze?icoszeﬁ

or, V= 2Rm(sin26i~:c0s29}—5
So, I;‘i or v= 200R=04m/s

. . dv
As w is constant, v is also constant and w, = e 0,

vz_ (2(:1}R)2

So, W= W, = Yy

Alternate : From the Fig. the anguvlar velocity of the point A, with respect to centre of
the circle C becomes

_d(ze)‘ 2(;4"@_

- 4w R = 0:32 m/s*

dt dt

Thus we have the problem of finding the velocity and acceleration of a particle moving
along a circle of radius R with constant angular velocity 2 w.

)-2&- consiant

Hence v= 2wR and
2
v2 (20R)
W W = 3 - 4w2R
Differentiating @ { £) with respect to time
g—-‘E - (D, = 2at (1)

dt
For fixed axis rotation, the speed of the point A:

vew@R=2atR orR-EY-; )
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1.45

1.46

Differentiating with respect to time

W, v _ 2aR= %, (using 1)

dt
y? vz .
But LA F' 9/201- 2atv (using 2)
So, w-\fw,z«»w;,2 -\/(v/r)2+(2atv)2
w  Vit+dais’

4

The shell acquires a constant angular acceleration at the same time as it accelerates linearly.
The two are related by (assuming both are constant)

w.o B

! 2=axn
Where w= linear acceleration and i = _angular acceleration

Then, w=V2H2nn= V 2-%{2::1:}2

But  v?’= 2wl hence finally
- 2xny
i

Let us take the rotation axis as z-axis whose positive direction is associated with the
positive direction of the cordinate , the rotation angle, in accordance with the right-hand
screw rule (Fig.)

(a) Defferentiating @ (¢) with respect to time.

do A
il 3b1? -, (1) and
da’e do,
T TE B, -6bt 2)
From (1) the solid comes 10 stop st At= ¢ = V &

The angular velocity o= a-3bt?, for 0<txVa/3b

a”f 3b74)d

a- 4

d 5 Va73b

So, <m>-nf';)dtt 2 = fat- e’ } a/36 /\/aISE = 2a/3
Ya/3b
afd:

[{]

Similarly B = |, {= 6b¢ for all values of r.
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Ya/3b
6be dt
So, <p>= [pa: < = V3q)
fdt Va/3b
fdt
0
(b) From Eq. (2) B, = - 6b¢
So, (B,),= Va/3b = - 6b gg-nzwf—
Hence L I{ﬁz)"Wl- 2v3ab

Angle o is related with | w,| and w, by means of the fomula :
w, 2
tana-m, where w,= 0”R and {w,|= §R )
4

where R is the radius of the circle which an arbitrary point of the body circumscribes.

From the given equation f§ = %? = af (here i = %-? * as f is positive for all values of £)

o t
Integrating within the limit.[dm- aftdt or, m-%atz
0

2 2,4
2 at a’t
So, w,meu(-z—) R= TR
and Jw,{= BR= atR
Putting the values of {w,| and w, in Eq. (1), we get,
a’ ¢t R/4 ar® 4 v

tan o m ——p— . o or, 1= [(a)tanal

In accordance with the problem, B, < 0

Thus -%—?- k Vo , where & is proportionality constant

£
or, *a%-k‘[dt or,\f&}‘-fﬁ)"g-% 1)

Y@
When @ = 0, total time of rotation f= T = 2 i 2
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1.49

1.50

2Vwy/k
2.2
f (wﬂ+ —kt\/wo)dt
A , oci fmdt (!
verage angular velocity < w > =
far 2V, [k
2oy /e
2.3 o 5
Hence < w > = mon-!-‘mi—"——&\[u—);tz /Zﬁn(Du/B
122 R k
dp

We have w =y ~dp = It

Integratin this Fq. within its limit for () ¢

¢ -k
f fdtor,ln o tp=---lct
Wy -k % g

o
Hence Q= -I;g(l -t 1)

(b) From the Eq., ® = wy -k and Eq. (1) or by differentiating Eq. (1)

w= wge

Let us choose the positive direction of z-axis (stationary rotation axis) along the vector
B, In accordance with the equation

dw, da,

- " p, or mzmd{p = B 7 A
or, w,dw,= pdo=Bcospdy, wz
Integrating this Eq. within its limit for ﬁz

w, (9}

w, % O 7‘/2 ?‘I,’_
fdm:a- ﬁofcosq;dtp ‘P
0 0

2

mz .
of, 5" By sin g

Hence o,= 3+ V2f,sing

The plot w, (¢} is shown in the Fig. It can be seen that as the angle @ grows, the vector

o first increases, coinciding with the direction of the vector E; (w, > 0), reaches the maximum

at @ = /2, then starts decreasing and finally turns into zero at @ = x. After that the body
starts rotating in the opposite direction in a similar fashion {w, < 0). As a result, the body

will osciliate about the position ¢ = 9/2 with an amplitude equal to x/2.
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1.51 Rotating disc moves along the x-axis, in plane motion in x - y plane. Plane motion of a
solid can be imagined to be in pure rotation about a point (say J) at a certain instant
known as instantaneous centre of rotation. The instantaneous axis whose positive sense is
directed along @ of the solid and which passcs through the point /, is known as instantaneous

axis of rotation.
Therefore the velocity vector of an arbitrary point (P) of the solid can be represented as :

- Sy (1)

On the basis of Eq. (1) for the C. M. (C) of

the disc A
g i iy y
Vo= X Ty 2

According to the problem v, 11 i and

044 Eie. ©Lx~y plane, so to satisy the
.

Eqn. (2) 7oy is directed along (~ j ). Hence point

Or

I is at a distance r.; = y, above the centre of
the disc along y - axis. Using all these facts
in Eq. {2), we get
vt
Vo= @y or y= = 3)

(a) From the angular kinematical equation
W, = g + ﬂz ! (4)
o= f¢z
On the other hand x = v¢, (where x is the x coordinate of the C.M.)

X
or, t= 7 (5)

From Eqgs. (4) and (5), w = Evﬁ

.V 2
Using this value of @ in Eq. (3) we get y = ::—- ﬁ:/v- é’;

(b) As centre C moves with constant acceleration w, with zero initial velocity

{ hyperbola )

So, x= %wrz and v, = wt
2x

Therefore, vemw\ - V2xw
Ve V2wx

Hence ym o (parabola)
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1.52

1.53

The plane motion of a solid can be imagined as the combination of translation of the C.M.
and rotation about C.M.

. — — —
So, we may write v, = Vo +v,
g g g
=V FWXT, (1) and
WA- wC+wAC 4
wwWot @ (-1, o)+ (Bxrye) (2) A

Tac is the position of vector of A with respect to C
In the problem v, = v = constant, and the rolling is without slipping i.e., Vo= Vv= oR,
So,'wo= 0 and §= 0. Using these conditions in Eq. (2)

— 2 — 2 A v A
Wam @ (~ryc)= 0 R(-u,c)= _RT("“AC)
A ——l
Here, u, . is the unit vector directed along r, ..

2

Hence w, = %— and ;»: is directed along (- QAC) or directed toward the centre of the

wheel.

{b)} Let the centre of the wheel move toward right (positive x-axis) then for pure tolling
on the rigid horizontal surface, wheel will have to rotate in clockwise sense. If w be the

v,
angular velocity of the wheel then @ = _RE - %

Let the point A touches the horizontal surface at £ = 0, further let us locate the point 4
ati=t,

‘When it makes 0 = w ¢ al the centre of the wheel.
From Eqn. {1) Vem Vot O X Fan
— — — i
= yvitw(-k}x[ReosO(~j)+Rsin8(-i)]
of, vy=vitwR[coswt(-i)+sinwtj ]
i i
= {v-cosc)i+vsinefj (asv= wR)

So, v,= V{v - vcos i)’ + (v sin wi)%

= vV 2(l-coswt) = 2vsin{wt/2)

Hence distance covered by the point A during T= 2 nt/w
2x/w

s-vadtnf?.vsin(mt/?.)dtn %’-- 8R.
4]

Let us fix the co-ordinate axis xyz as shown in the fig. As the ball rolls without slipping

along the rigid surface so, on the basis of the solution of problem 1.52 :
— iy anlh
Thus Vo= V,+0xr, =0 ?.}

v,= oR and ®1}(~k) as ¥, 11i

)
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®, o, +Fxr. r,.=0
and
w = BR and B"H(mk) as w41
At the position corresponding to that of Fig., in
accordance with the problem,

W.= W, S0 V= Wt Iy
Ve Wt W . x
and m-R-R and BuR{usmg 1) 7

{a) l.et us fix the co-ordinate system with the frame
attached with the rigid surface as shown in the Fig.

As point O is the instantancous centre of rotation of the ball at the moment shown in Fig.
s0, Vo= 0,

Now, Vem Vot B X T
- — e ol -
= voit@(-k)xR{j)= (vo+wR)i
e ™ ™
So, V= 2vpi= 2wii (using 1}
. e T e - P T
Similalry vgm Vot @ xFge= voi+ 0 (-k)xR{i)
= Vit @R(~])m veitvp(-])
— —
So, vy=VZ v_=VZ wt and v, is at an angle 45° from both iand j (Fig.)
() W= W+ @l (7o )+ Fx 7o
V2 A W +8g
-w(»roc)- € (~ftpe ) (using 1)
where uoC is the wnit vector along 7o
%

50, W, 2t
-
i o R

R
directed towards the centre of the ball

(using 2) and W), is

Now W, = W + 07 (= Tre ) + B X Fre
= wi—:rmzR(-ﬁ-bﬁ(“F)XR;’

Vz 2 b o
= (w+ ﬁfe)ﬁ—ﬁ"»pﬁ (using 1) = 2w2’11"—j{-—{-;)
/ 4.4 02
wi wt
Sa, Wy = -4wz+-~--~-~-~R2 =-2w 1+[~———2R)
Similarly Wy = W+ 0 («7pe ) + Bx Tpe

- witWR(-D)+BFIxR{)

- (v--ﬁ?)?lﬁx(—fi (using 1)
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- (w— ”’;‘2) F+w(~)) (using 2)

SO, Wp = V(W—““%“"z’)zi-wz

1.54 Let us draw the kinematical diagram of the rolling cylinder on the basis of the solutios
of problem 1.53.

A U2V

As, an arbitrary point of the cylinder follows a curve, its normal acceleration and
radius of curvature are related by the well known equation

We= g
2
. Va
so, for point A, Wam ™ R
A
4 vf
or, R, w —-= 4r (because vy = wr, for pure rolling)
r
Similarly for point B,
Y
Yapn = R—a
VI
w?r cos 45° = ( R :) )
B
%
or, Ry= 2'\/2-—2'—- 2v2r

wr

1.55 The angular velocity is a vector as infinitesimal rotation commute. Then the relative angular
velocity of the body 1 with respect to the body 2 is clearly.

— -l —i
Wy =Wy ~ Wy

as for relative linear velocity. The relative acccleration of 1 wrt, 2 is

().
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where §' is a frame corotating with the second body and 5 is a space fixed frame with
origin coinciding with the point of intersection of the two axes,

b (d&;‘]) (df?x) > -
ut by B Sy +0)2X(01
dt ¢ dat ¢

. ()
. . . 1
Since S ' rotates with angular velocity W; . However (-—&;—) = { as the first body rotates
5
with constant angular velocity in space, thus
Bo gy i
12= G X Wy

Note that for any vector b, the relation in space forced frame () and a frame (k') rotating
with angular velocity @ is

£I—E’l _g'__f_;_] +axb
dt t
K &

We have &= ati+ btzr 1
So, o=V (a)? + (b)Y , thus, o i= 10s ™ 1-81rad/s

Differentiating Eq. (1) with respect to time

F- L2 arton @
So, B=V aE +(2 bt)i
and Bl,. 105 = 13 rad/s’

P (@ivbt ) @ir2b])
OB V(v (Y V a+ )

{b} COS O =

Putting the values of (a) and (b) {aﬂditaking t= 10s, we get
aw 17°

{a) Let the axis of the conc (OC) rotates in anticlockwise sense with constant angular
velocity @ " and the cone itself about it's own axis (OC) in clockwise sense with angular
velocity (T)'[, (Fig.). Then the resultant angular velocity of the cone,

D= @ +dy )
As the rolling is pure the magnitudes of the
vectors @ and @y can be casily found from
Fig.

w?

= o, wy= W/R @

As @ Ly, from Eq. (1) and (2)
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w=Vo?+al

v V2 [v}? v
v(Rcctot) +(R) ‘Rcosa'zsmd/s

(b) Vector of angular acceleration

do d@ +@y)
e (as @ = constant.)

The vector ("5:, which rotates about the OO’ axis with the angular velocity @ ', retains i
magnitude. This increment in the time interval dt is equal to

-y . —s gy
|dwy| = oy o dt or in vector form d wy = (® x ©, ) dr.

Thus B~ & x @
The magnitude of the vector P is equal to

B= o wylas © L)

y_ 2 %tana-?.{}rad/s

So, 13chotmEmR

1.58 'The axis AB acquired the angular velocity
@ = Byt M
Using the facts of the solution of 1.57, the
angular velocity of the body

w= Vol +a®
= Vmﬁ-a- ﬁgtz = (-6 rad/s

&
i

SN

T

A

e

Wo

p-

And the angular acceleration.
P 45 _ 4@ +y) d;;;'*da);
dt dt dt dt

But mdc?}; o x @y, and ___E;";" Bot
- -
dr 0> dr ¢

So, B.'(B;“‘ 5>'o}+5$

As, Poldy so, B V(0B + B2 = BV 1+ (w1 = 02rad/s®
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THE FUNDAMENTAL EQUATION OF DYNAMICS

Let R be the constant upward thurst on the acrostat of mass m, coming down with a
constant acceleration w, Applying Newton’s second law of motion for the aerostat in
projection form

F,= mw,
mg~R« mw 1
Now, if Am be the mass, to be dumped, then using the Eq. F = mw,
R-(m-Am)gw (m-Am)w, 2
2mw

From Eqs. (1} and (2), we get, Am = gtw

Let us write the fundamental equation of dynamics for all the three blocks in terms of
projections, having taken the positive direction of x and y axes as shown in Fig; and using
the fact that kinematical relation between the accelerations is such that the blocks move
with same value of acceleration (say w)

myg =Ty = myw (L =< TNI Na
T,-T,~kmg=m,w @ 7 g : 2 2
) o L x
and T,~kmyg= myw 3) 77777 /l/ 777 Scrlf//lh 7 ,ff'z
The simultancous solution of Egs. (1}, {2) and T ! m
(3) yields, f m,g 23
my + my +m, ?
d T (1+k)m

- 2% mgrmirm, 28 ma?

As the block m, moves down with acceleration w, so in vector form

= [mg~k(my+m;) 18
m0+m1+m2

Let us indicate the positive direction of x-axis along the incline (Fig.). Figures show the
force diagram for the blocks.

Let, R be the force of interaction between the bars and they are obviously sliding down
with the same constant acceleration w.
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1L.62

Newton’s second law of motion in projection form along x-axis for the blocks gives :

mgsina-kymgcosa+Rw mw

mygsino ~R-k,m,gcos o= m,w
Solving Eqgs. (1) and (2) simultancously, we get

k,m, +
w= gsina-—gcosamand
m, +m,
R= m; m, (k, ~ k,) g cos o
m, + Fiy
(b) when the blocks just slide down the plane, wa 0, so from Eqn. (3)
kym, +
gsinaﬂgcosaMa 0
™y +my
o, {m;+ mysino= (k,m; +k,m)coso
kym, +
Hence fano - S_l_i_k?_,m__ﬂ;)..
my +my,

Case 1. When the body is launched up :

M)
&)

&)

Let k be the cocHliceint of friction, u the velocity of projection and ! the distance traversed
along the incline. Retarding force on the block = mg sin o + kmg cos a and hence the

retardation = gsina + kg cos a.
Using the equation of particle kinematics along the incline,
Om u*-2(gsina+kgeosa)l
2

u
on I= 2(gsino+ kgcos a) @)
and C=u~-(gsina+kgcosa)t
or, um (gsina+kgcosc)r )
Using (2) in (1) I = %—(gsina-rkgcosa)rz 3
Case (2). When the block comes downward, the net force on the body
= mg sin & — km g cos & and hence its acceleration = gsino - k gcos o
Let, ¢ be the time required then,

I= -;—(gsinot—lc,gcoﬁxiczt)t'2 @
From Eqs. (3) and (4)
_tf_ . Sino - kcos o
¢? sina+kcosa
But;,':-- i— (according to the question),

Hence on solving we get

2
k= %:%mnaw 016
m+
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7

At the initial moment, obviously the tension in the thread connecting m, and m, cquals
the weight of m,,.

.(a) For the block m, to come down or the block m;, to go up, the conditions is

myg-T20 and T~m, gsina~frz0

where T is tension and f, is friction which in the }limiting case equals km,g cosa. Then

or my g - mysino>kmg gcoso
or —:—2—>(koosa+sina) N T
1
(b} Similarly in the case T
mygsina-m,g>fr f?‘
of, my gsinc ~myg > km,gcosa & g ng_
of, -2—2"< {sin o — k cos a)

1
{c) For this casc, neither kind of motion is possible, and fr need not be limiting,

m
Hence, {kcosa+sina)>~;?~>(sina~kcosa)
1

From the conditions, obtained in the previous problem, first we will check whether the
mass m, goes up or down.

Here, my/m, = 1> sin o + k cos «, (substituting the values). Hence the mass m,, will come
down with an acceleration (say w). From the free body diagram of previous problem,

my—g-T=mw *
and T-mygsina-km gcosa= m,w (2)
Adding (1) and (2), we get,

myg-m gsina-km gcosa= {m; +m)w

(mz/mlasina-koosa)g' (~sina-kcosa)g
(1 +my/m,) 1+7
Substituting all the values, we (-048g~0-05¢
As m, moves down with acceleration of magnitude w= 0.05 g > 9, thus in vector form
acceleration of my :

W=

e (n-sinu—kccsa)g’_ —
A Tom 0.65g.

Let us write the Newton’s second law in projection form along positive x-axis for the
plank and the bar

fr=mw, fr=mw, (1)
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1.66

1.67

At the initial moment, fr represents the static

friction, and as the force F grows so does the

friction force fr, but up to it’s limiting value

ie fr= fr_,(m)s EN= km2 g. fr -mzL-:-'-.'F
Unless this value is reached, both bodies moves - fp
as a single body with equal acceleration. But T
as soon as the force fr reaches the limit, the /777 7/ /1 /7711177717717 77
bar starts sliding over the plank i.c. wy 2 wy.

Substituting here the values of w, and w, taken from Eq. (1) and taking into account that

km
f, = km, g, weobtain, (af - b, g)/m, = ;;E g, were the sign "=" corresponds to the moment
1

I= 1, (say)
kgm,(m, +
Hence, 'tO - M
am;
If t s £, then wl1 - %ﬁ(mnstant). and

1
wy = {at ~ km, g)/m,
On this basis w, (t) and w, (), plots are as shown in the figure of answersheet.

Let us designate the x-axis (Fig.) and apply F,= m w, for body A :
mgsinat—-kmgcosa=mw

or, w= gsina-kgcosa

Now, from kinematical equation :

Iseco= 0+ (1/2) wi?

or, tw V2Iseco/{sina~kcosa)g

= V21/(sin2c/2~kcos’ o) g

(using Eq. (1)).

d(—-————smzza—kcasza)
fOl’ tm, da - 0
ie. g~---("J-(-,g---z-}-:'f—-4-21'itc>osol.sinor.--s 0
or, n2ow- --:;-—-bas 49°

and putting the values of o, k and [ in Eq. (2) we get 1=~ 1s.

Let us fix the x ~ y co-ordinate system io the wedge, taking the x — axis up, along the
incline and the y — axis perpendicular to it (Fig.).
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Now, we draw the free body diagram for the
bar.

Let us apply Newton’s second law in projection
form along x and v axis for the bar :

TcosB-mgsina-fr=0 (1)
Tsinf+N-mgeosa= 0

or, N= mgcosa-Tsinf 2)
But f, = kN and using (2) in (1), we get

Tw mgsina + kmgcos &/(cos f + ksin B) 3)
For T, the value of (cos B + ksin ) should be maximum
d{cos B + ksin §)
dp
Putting this value of f in Eq. (3) we get,

So, =0 or tanfi= k

m g (sin o + kcos o) m g (sin o + & cos o)

T b -
e IVI+E 42V + k2 Vi+k?

First of all let us draw the free body diagram for the small body of mass m and indicate
x — axis along the horizontal plane and y - axis, perpendicular to it, as shown in the figure.

Let the block breaks off the plane at = #; ie. N= O
So, N=mg-apsina=10

AN F
o, fy™ ;-gf—a ) \ % oL
x [ ]

From F_ = mw,, for the bedy under

investigation : I
md y/dt = atcos o ; Integrating within the 1
limits for v (1) mg

mj.dvza acosaftdt (using Eq. 1)
0

0

ds acoso 2

SO, L —&‘m- mz-;;;—-—-‘ (2)
Integrating, Eqn. (2) for 5 {7)
3
acosat

= m 3 @)

Using the value of ¢ = £, from Eq. (1), into Eqs. (2) and (3)
mg‘cosa m* g cos o,
= 5 and s= T3
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1.69 Newton’s second law of motion in projection form, along horizontal or x - axis ie.

1.70

L71

F, = mw, gives.

Fcos {as) = mvgv“ {as o = as)

ds AN
o1, Fcos{as)ds= mvdv F
Integrating, over the limits for v (s} L
® r.f:...)_«.-.‘-.“....-y x
F v
- cos (as) ds = ) 77T 2777777777
o

Y
. mg
2Fgino
or v= "y a
=VY2gsina/3a (using F= %‘g‘)

which is the sought relationship.
From the Newton’s second law in projection from :

For the bar,
T-2kmg= 2m)w
For the motor,
Twkmgm mw
Now, from the equation of kinematics in the frame of bar or motor :

1 2
I= s wew)i

From (1), (2) and (3) we get on eliminating T’ and w/
t=V 2U/kg+3w)

\f*

TI
2m «

. m 5
I T ITIT T I 777777 ¢
r

<7
fr

)
@

3

Let us write Newton’s second law in vector from F = mw, for both the blocks (in the

frame oi;Eround).
Tem, E’ - m, "—"’1 (1)
pasd s —»
Temyg=mw, ¢9)

These two equations cogtain three unknown
quantities ;, W, and T . The third equation

is provided by the kinematic relationship }-’ A ?
between the accelerations :
Wi s W, Wy =W ) my
i

where W is th acceleration of the mass m,
with respect to the pulley or elevator car.
Summing up termwise the l¢ft hand and the m@’

’

right-hand sides of these kinematical equations, we get
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e 2, @)
The simultaneous solution of Egs+(1), {2} and (4) yields

—p —
- fmi—myg+2myw,

Wy

my, m,

Using this result in Eq. (3), we get,

m,—-m 2m.m
i i e e j b AP
W s = -, aﬂd T.__ W,y
moem (g~ wp) .+ m (wp g)
i 2 1 2
my, —m,

Using the results in Eq. (3) we get rig. &~ ﬁ:,)

me+m,

(b) obviously the force exericd by the pulley on the celing of the car

m; +m,

Note : one could also solve this problem in the frame of elevator car.

Let us write Newton’s second law for both, bar 1 and body 2 in terms of projection having
taken the positive direction of x; and x, a5 shown in the figure and assuming that body 2

starts sliding, say, upward along the incline

T, ~m, gsino = mw, )

myg-Ty= myw 2
For the pulley, moving in vertical direction
from the equation F,= mw,
2L -1 = (mp)wlw 0

{as mass of the pulley m, = 0)
or I=2T, )]
As the length of the threads are constant, the

kinematical relationship of accelerations
becomes

we= 2w, 4
Simultaneous solutions of all these equations yields :
my
2gi2 - sina
! 2g(2m-sina)
v= m - {(4n+1)
[ 424 1)
my

As 1> 1, w is directed vertically downward, and hence in vector form

- 2g(2m-sina)
¢ 4 +1
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1.73 Let us write Newton’s second law for masses m, and m, and moving pully in vertical
direction along positive x - axis (Fig.) :

mg-T=mw, (1) —Wo —> X
myg-T=mw, () Tr
m,
T,~2T= Clasm=0) 777 7TTTITTT777
or T,=2T €)] T
Again using Newton’s second Jaw in projection
form for mass my along positive x, direction r Wo
(Fig.), we get T
T, = myw, 4
The kinematical relationship between the X
accelerations of masses gives in terms of m;g Mol
projection on the x - axis 25
Wy Wa = 2wy )

Simultaneous solution of the obtained five equations yields :
[4mymy+mg(my~my) ] g
4m, my + my(m; +m,)

W1==

In vector form

o [dmymy 4 g (my-m) 1§
wi= =g
my, My + my(m, +my)

1.74 As the thread is not tied with m, so if there were no friction between the thread and the
ball m, the tension in the thread would be zero and as a result both bodies will have free
fall motion. Obviously in the given problem it is the friction force exerted by the ball on
the thread, which becomes the tension in the thread. From the condition or language of
the problem wy, >w, and as both are directed downward so, relative acceleration of
M= w,-w_and is directed downward. Kinematical equation for the bali in the frame

of rod in projection form along upward direction gives :
1
be 5 Wy =Wy ) m

Newton’s second law in projection form along
vertically down direction for both, rod and ball
gives,

Mg ~frm= Mw, ¥3]

mg - frm mw, @
Multiplying Eq. (2) by m and Eq. (3) by M
and then subtracting Eq. (3} from (2) and after
using Eq. (1) we get
2IMm

I —m
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Suppose, the ball goes up with accleration w, and the rod comes down with the acceleration w,.
As the length of the thread is constant, 2 w, = w, 1)

From Newton’s second law in projection form along vertically upward for the ball and
vertically downward for the rod respectively gives,

T-mgemw,; )
and Mg-T'=Mw, 3
but T=2T {because pulley is massless) {4)

From Egs. (1), (2), (3) and (4)
_M-mg (2-m)g

wy TY] e {in upward direction)
and w, = 251:- 4; (downwards) T

From kinematical equation in projection form, we get

1
I!‘mi—(wl-:-wz).t2 T

as, w, and w, are in the opposite direction.
Putting the values of w, and w,, the sought ';;;g Mg,
time becomes
t=V2im+4)/32-n)g= 14s
Using Newton’s second law in projection form: along x - axis for the body 1 and along
negative x - axis for the body 2 respectively, we get
myg =T, = mw (1)

L-mg=mw @

For the pulley lowering in downward direction
from Newton’s law along x axis,

T,~27T,= 0 (as pulley is mass fess)
or, T=2T, 3
As the length of the thread is constant so, 1’?

1] g

wy= 2w 4 ¥
The simultaneous soluti { above equations vields,
im 1l ution o quations y ’;:::;;;;;;:;;zm::i;g-

2(m ~2m)g 2(m-2) M

Ll
2T T m e m, n+4 (as m, " ©)

Obviously during the time interval in which tbe body 1 comes to the horizontal floor
covering the distance A, the body 2 moves upward the distance 24. At the moment when
the body 2 is at the height 2k from the floor its velocity is given by the expression :

v%n2w2(2h)-2 2n-2) Q}zagh{ =2)
n+4 n+4
After the body m, touches the floor the (hread becomes slack or the tension in the thread

zero, thus as a result body 2 is only under gravity for it’s subsequent motion.
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Owing to the velocity v, at that moment or at the height 24 from the floor, the body 2
further goes up vnder gravity by the distance,

po i #0-2)
2g n+4

Thus the sought maximum height attained by the body 2 :
4hin-2) 6nh

m+4) " n+d
Let us draw free body diagram of each body, i.c. of rod A and of wedge B and also draw
the kinemetical diggram for accelerations, after analysing the directions of motion of
A and B. Kinematical relationship of accelarations is :

Wa
tn g — 1
Wa
Let us write Newton’s second law for both bodies in terms of projections having taken
positive directions of y and x axes as shown in the figure.

Ha 2h+H = 2h+

m,g-Ncosaw m, w, 2)
and Nsino= mgw, (3)
Simultaneous solution of (1}, (2) and (3) yields :
m, gsina g

w, = - = and
m,sin g+ mgeot wcos & (1 +m cot® o)

. S g
8= Gna - (tan o+ cof &)
N ——
A Was
> B
1.UA —>
NN YA
ly A Ymag « ’
'—;"“x' oy
ws

Note : We may also solve this problem using conservation of mechanical energy instead
of Newton’s second law,

Let us draw free body diagram of each body and fix the coordinate system, as shown in
the figure. After anajysing the motion of M and m on the basis of force diagrams, let us
draw the kinematical diagram for accelerations (Fig.).

As the length of threads are constant so,
ds = ds,, and as 17;” and i'“; do not change their directions that why

lﬁ:’m l - IWMI = w {say) and

Woar 11 Ve and Wy, 14 Uy
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—>
Wr v
T
T T fn
-
N N H— Wm
frYAT o
W
T
Zox M =
W
As ﬁ’:' e Wm + WM
so, from the triangle law of vector addition
w,=VZw 6h)
From the Eq. F, = mw,_, for the wedge and block ;
T-N= Mw, @)
and N= mw 3
Now, from the Eq. F,= mw,_, for the block
mg~T—-kN=mw (4)
Simultaneous sotution of Egs. (2), (3} and (4) yields :

W mg - 4
(m+2m+ M) (k+2+M/m)

Hence using Eq. (1)
vZ
Mm GV kv M/m)

Bodies 1 and 2 will remain at rest with repect to bar A for w, <w s w_,, where w,is

the sought minimum acceleration of the bar. Beyond these limits there will be 2 relative
motion between bar and the bodies. For 0 s w s w_,, the tendency of body 1 in relation

1o the bar A is to move towards right and is in the opposite sense for wzw,, . On the

basis of above argument the static friction on 2 by A is directed upward and on 1 by A
is directed towards left for the purpose of calculating w,, .

Let us write Newton’s second law for bodies 1 and 2 in terms of projection along positive

;—?:i(fnlg‘;?. of, frym T-mw (1) V1 —s W

Ny= mw 2 T
As body 2 has no acreleration in vertical f T €
direction, so v A\

fra=mg-T (3) mg T
From (1) and (3)

(ry+fr)= mig-w) @ P

But Jrivfrosk (N, +N,) 2 ‘fmg_
or  fri+frosk(mg+mw) )

T T 77



46

1.8¢

1.81

From (4) and (5)
m(gmw)sr!nk(gq-w), or wax gl-k

{(1+k)
1-k
Hence Woin ™ g—é—;l?})-
On the basis of the initial argument of the solution of 1.79, the tendency of bar 2 with
respect to 1 will be fo move up along the plane.
Let us fix {(x - ¥) coordinate system in the frame of ground as shown in the figure.
From second law of motion in projection form along y and x-axes :

mgecosa-N=mwsina

o, N=m(gcosa-wsino) 1)
mgsina+ fr= mwcosa
of, fr=m(wcosa-gsina) (%)

but fr= kN, so from (1) and (2)
(wecosa-gsina)sk{gcosa+wsina)
or, w(cosa~ksina)sg({kcosa +sina )}

or ws (cosa+sina)
: 8 osa-ksna

So, the sought maximum acceleration of the
wedge :
(kcosa+sina)g {(kcota+l)g
max T TCos o - ksina . cole-k
Let us draw the force diagram of each body, and on this basis we observe that the prism
moves towards right say with an acceleration w1 and the bar 2 of mass m, moves down

where cota > &k

the plane with respect to 1, say with acceleration w.,1 , then, w2 = w21 +w,y (Fig.)

Let us write Newton’s second law for both bodies in projection form along positive
¥, and x, axes as shown in the Fig.

m:gcﬂsﬂ.‘"N“mz‘@b(yz)ﬂ mz{WZI(yz)+W1'(y2}]= M2[0+W15iﬂa]

or, my g cos o~ N= m,w, sina (1)
and © Nsina = mw, @
Solving (1) and (2}, we get

m; g sin a.cos . .. &sinacosa

my+mysin’a  (my/my)+sin’a

1=
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1.82 To analyse the kinematic relations between the bodies, skeich the force diagram of each

1.83

body as shown in the figure,

On the basis of force diagram, it is obvious that the wedge M will move towards right
and the block will move down along the wedge. As the length of the thread is constant,
the distance travelled by the block on the wedge must be equal to the distance travelled
by the wedge on the flobr. Hence ds,,,, = ds,, As 17;“ and 17;, do not change their
directions and acceleration that’s why W, ,, 11 V., and w,, $1 \7:, and w,,, =w, =w

(say) and accordingly the diagram of kinematical dependence is shown in figure.

N 7 T
T >
Winn —
/\ %’ — X1 W
x \nv M o
mg
7777777777777 777777777777/ W ’

i i — . N
As w, = W, + Wy, so from triangle law of vector addition.

W, = \/wf,{»w,fM—Zme wycosa = wY2(1 - cosa) 1)
From F,= mw_, (for the wedge),
T= Tcosa+Nsinam Mw (2)

For the bar m let us fix (x -y ) coordinate system in the frame of ground Newton’s law
in projection form along x and y axes (Fig.) gives

mgsina - T=mw, =m [me ot Wu(x)]
=m {W,..u + W, oS (7T - a)] =mw(l - cosa) 3)

mgeosa-N=mw, . = m{me(y)+wM{y)}- mi0+wsina ] @)

Solving the above Egs. simultaneously, we get
- mgsin o
M+2m(1l-cosa)

Note : We can study the motion of the block m in the frame of wedge also, alternately
we may solve this problem using conservation of mechanical energy.

w

Let us sketch the diagram for the motion of the particle of mass m along the circle of
radius R and indicate x and y axis, as shown in the figure.

i —
(a) For the particle, change in momentum Ap= mv (-i)-mv{j)
$0, | A ; | = Vamy

and time taken in describing quarter of the circle,
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?ER
At 2y
v, > | 2 A
Hence, <F>m {Apl V2mv 22my —s y

At  ®mR/2v. xR
(b) Inth:scase
p.:ﬂandpfsmwt(—L)

50 |Ap}mmw:t

lapl

-
Hence, |<F>|= = mw,
t

While moving in a loop, normal reaction exerted by the filyer on the loop at different
points and uncompensated weight if any contribute to the weight of flyer at those points.
(a} When the aircraft is at the lowermost point, Newion’s second law of motion in projection
form F, = mw, gives

2
_my “
Ne-mg= Y
mv?
or, N= mg + = 2:09 kN [
7
(b} When it is at the upper most point, again
from F_ = mw, we get | ] mg
mv
N+ mg = —
tmg=—p m}
" mv2
N = -mg= 7T kN

{c) When the aircraft is at the middle point of the loop, again from F, =

2
N = Q’R‘i—- 14 kN

The uncompensated weight is mg. Thus effective weight = VN +m” g" = 1-56 kN acts
obliquely.
Let us depict the forces acting on the small sphere m, (at an axbitrary position when the

thread makes an angle B from the vertical) and write equanon F = mwvia projection on
the unit vectors u and u From F,= mw,, we have

m sinQ-mgx
J dt

vdv m vdy
ds I(-d@)

- m

(as vertical is refrence line of angular position)



or vdve -glsin8dg
Integrating both the sides :

v @
dve ~gl] sin8d0
{v v g!/;sm

2
v
of, z-glcosﬁ

2
Hence YT =2gcosBm w, )

{Eq. (1) can be ecasily obtained by the
conservation of mechanical cnergy).

From F =mw,

mv?

T

T-mgcosf=

Using (1) we have
T=3mgcosf @
Again from the Eq. F, = mw,:

mgsinO=mw, or w,= gsin@ 3)

Hence ww \/wf-rwf - \/(gsin{))2+(2gcos9)2 {using1 and 3)

w gVi+3cos?0

{(b) Vertical component of velocity, v, = vsin 8

So, v’,za visin?@w 2g/cos Bsin’ @ (using 1)
. 2 d(cosesinzf)!
For maximum v, or v, 70 =0
kich yield 05 O = L
which yiclds c A

Therefore from (2) I'= 3mg*\,1~3-—~a= Vimg

I A
{c) We have W= W +w ou, thus wom Wy, +w .,
But in accordance with the problem w, = 0

So, Wig) ¥ Wy = O
of, gsinBsin@+2gcos?0(-cos )= 0

1 °
of, cosﬁz‘a— or, O= 547
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The ball has only normal acceleration at the lowest position and only tangential acceleration
at any of the extreme position. Let v be the speed of the ball at its lowest position and /
be the length of the thread, then according to the problem

)
EI— = gsino 1)
where o is the maxinum deflection angle

From Newton’s law in projection form : F,= mw,

[

-—gl}sinﬂdeafvdv
L]

¥

~mgsin 0= my dy
gsin 1d® 1 \
or, ~glsinBdBw« vdv ! \\h,
On integrating both the sides within their limits, i f-.'h'
e t
V

or, Vo 2gl (1 - cos o) {2)
Note : Eq. (2) can easily be obtained by the conservation of mechanical energy of the
ball in the uniform field of gravity.
From Eqgs. (1) and (2) with 8 = «
2gi(l-cosa}= lgcosa

or, COS(I*%“ 50, o= 53°

Let us depict the forces acting or the body A (wh:ch are the force of gravity mg and the
normal reaction N } and write equation F= mw via projection on the unit vectors
u and un (Fig.)

From F,» mw,

. dv
mgsin @ = may
-l e
s - "Rde
or, gRsinBd0= vdy
Integrating both side for obtaining v (6)
L) ¥
fgﬂsineda-fvdv
o o
o, Wy = 2gR (1 -cos ) (b
From F,= mw,
W
mgcos 8 ~N = m— (2)

At the moment the body loses contact with the surface, N = 0 and therefore the Eq. (2)
becomes

v = gRcos 8 (3
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where vand 8 correspond to the moment when the body loses contact with the surface.
Solving Egs. (1) and (3) we obtain cos 0 = % of, 0= cos ' (2/3) and v = V 2gR/3 .

At first draw the free body diagram of the device as, shown. The forces, acting on the
sleeve are it’s weight, acting vertically downward, spring force, along the length of the
spring and normal reaction by the rod, perpendicular to its length.

Let F be the spring force, and Al be the clongation,
From, F, = mw, :
Nsin®+Fcos 0= maw’r (1)
where rcos 8= (I, + Al).
Similarly from F,= mw,
Ncos@-FsinO=0 or, N=Fsin8/cos 9 (2)
From (1) and {2)

F(sin0/cos8)-sin®+FcosO= mow'r

_ 2

= ma” ({ + Al}/cos 6 ,\)w
On putting F= x Al I
xAlsin®@+xAlcos’ 0= mw?(iy+Al) & F
on solving, we get, N /

'} ]

Al= mo? 0 Pl 02

K-ma {(x/mw -1) mg

and it is independent of the direction of rotation.

According to the question, the cyclist moves along the circular path and the centripetal
force s provided by the frictional force. Thus from the equation F = mw_

2
my my
fr= - or kng = -
r V2 2
or ko(lukg-)g=-;- or vV¥= k(r-r/R)g 1
2
r
‘%)
For v,_,,, we should have prn = {)
or, I»——%{m- 0, so r=R/2
Hence v, = —%V ks gR
As initial velocity is zero thus
V=2 w, s (1)

As w, >0 the speed of the car increases with time or distance. Till the moment, siiding
starts, the static friction provides the required centripetal acceleration to the car.

Thus fr=mw, but fr= kmg
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So, w's g% or w?-i--v;;-s g
of, vzs(kzgz—wf)R
Hence Vyar = ¥V (??—wf)ﬂ

Vas _1 4 [TREY
so, from Eqn. (1), the sought distance 5 = T "2 (w ) -1 = 60m,

t 3
Since the car follows a curve, so the maximum velocity at which it can ride without sliding
at the point of minimum radius of curvature is the sought velocity and obviously in this
case the static friction between the car and the road is limiting.

Hence from the equation F, = mw

kmg = —’?——-—Vi or vs YkRg

R
S0 Voux = VAR 8 - (€))
We know that, radius of curvature for a curve at any point {x, y) is given as,
R |[L1t@y/a 7 @
@)/ ad
For the given curve, )
dy a x d? y =-a.. x
it = CoS = and P = ~—5-gin =
o
Substituting this value in (2) we get,
[1 +(a*/0?) cos® (x/a) P
(a/az) sin {x/ )
For the minimum R, .z
a 2
and thercfore, corresponding radius of curvature
2
o
Rein® - 1&))

Hence from (1) and (2)

Voux = OV kg/a
The sought tensile stress acts on cach element of the chain. Hence divide the chain into
small, similar elements so that each element may be assumed as a particle. We consider
one such clement of mass dm, which subtends angle 4 o at the centre. The chain moves
along a circle of known radius R with a known angular speed ® and certain forces act on
it. We have to find one of these forces.

From Newton's stcond law in projection form, F, = mw, we get
2 Tsin (do/2) - dN cos 0 = dmw’ R
and from F, m mw, we get
dN sinQ = gdm
Then putting dm = mdo/2 n and sin (do/2) = da/2 and solving, we get,
m (wZR + g cot 0)

T- 2n




B3

dd&

Yx

193 Let, us consider a small element of the thread and draw free body diagram for this element.
{(a) Applying Newton’s second law of motion in projection form, F, = mw, for this element,

(T+dTYsin (d6/2) + Tsin (d6/2) ~dN = dmnw’R= 0
of, 2T sin (d 6/2) = d N, [negelecting the term({dT sin d 6/2) ]

or, Td0=dN, as sin 22w 48 o
2 2
Also, dfr=kdN= (T+dl)}-T=dT T @
From Eqs. (1) and (2), dfr
kTd0=dT or L ka0 dn
In this case Q = so, dg T-I-dT
—2-—_
o, or, In T, kn 3)
1, I 1
SO, k=;t-h'l '1—_;'= ;t-ln’qo 7; 7-2

a8 = ——m —l= 7 mh g

m.
(b) When _,,',E" 1, Which is greater than v, the blocks will move with same value of
1
acceleration. (say w) and clearly m, moves downward. From Newton’s second law in

projection form (downward for m, and upward for m,) we get :
myg—Tp= myw )
and Fi-mge=mw &)
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P
Also ﬁ= T (6)
Simultaneous solution of Eqs. (4), (5) and (6) yields :
(my-momy)g (M=) M
(e mgm) . m+mg)© K

The force with which the cylinder wall acts
on the particie will provide centripetal force
necessary for the motion of the particle, and
since there is no acceleration acting in the
horizontal direction, horizontal component of
the velocity will remain constant througout

(@

the motion.
So V= vy 008 QL
Using, F, = mw,, for the particle of mass m,
mv:  mvicos’a
N= —=2= 2L
R R ’

which is the required normal force.
Obviocusly the radius vector describing the position of the particle relative to the origin of
coordinate is

r=xi+yj= asinwti+bcoswt)

Differentiating twice with respect the time :

22—
W= 52--5.= ~w2(asinwt?:bcosmrﬁw Al (1)
t
Thus Femw=-ma®r
(3) Wehave Ap= f Far
t
= fm gdt=mgt M
0 i i
. . . . 2(v8)
(b) Using the solution of problem 1.28 {(b), the total time of motion, v= ~ %
g
Hence using t=1tin(l)
|47 = mgt

= -2m (g ¥g (Fp &is-ve)
From the equation of the given time dependence force F=a t(t~-t) at r=r1, the force
vanishes,

(8) Thus A,E:-;’af?dr
1]



L1 s
or, f;’wf;;':('c—t)dt-q-g-
[
but ﬁ’s m;.so V= ?—13-
6m
(t) Again from the equation Foumw
— v
af{‘t-wt)ﬂm*‘dT
ot, alte=t*)dt= mdv"

Integrating within the limits for ¥{t),

1 ¥
fﬂtt-ntz)dtu mfd?
0 0

oo @fut? ) di(v 1
or, m|l 2 3 m 273
2
at T r
Thus v-m(zws)fortst

Hence distance covered during the time interval f = T,

T

s-fvdt

-fs_fi LI PP
m (2 3 m12
]
198 We have F = F,sin wt
or m——= Fisinwt or mdv= F,sinwrdt

dt
On integrating,

s

-F
v = —2 cos wt + C, (where C is integration constant)
w

F,
When f=0, v=0,50 C= —
mw

o —

F,

— T Lg g
Hence, v = — COS Of + ~—~
mw muw

F,
As lcoswt £ 1 so, v= ~L (1-coswt)
mo
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Thus s-fvdt

0
Fyt Fysinet F, )

- e o e e ( (3 — $iN €OF )
mw mw mw

{Figure in the answer sheet), .
1.99 According to the problem, the force acting on the particle of mass m is, F = F,cos of
s

- F
So, m%Y e Frcosor or die —2 cos wrdr
dt m

Integrating, within the limits.

-

14 i f

anmiy
F —- F,
fd\?s —qfcosmtdt of v= —sinwt
m mo
0 o
It is clear from equation (1), that after starting at = 0, the particle comes to rest fro

. f1
the first time at £= —.
@

F E - Fy § n
rom Eq. (1), v= |V|= — g sinot for 15 = 2

Thus during the time interval t = n/w, the sought distance

F /0
s-—ifsinmrdtw 2F2
mw
(Y

mo
From Eq. (1)
Fy ) <1
" ¢
Vimax ® T 88 | sinewt | =
- — ;"’ —
1180 (a) From the problem F= ~rv so mese -y
dav A )
Thus m-&?-uw{as dvt}v}
or, ﬂ_"_’n L
v m
On integrating Inve —';';""t-i-C
But at t=0, vy, 80, C=Inv,
i r_ . L -t
or, o= Tt Oh VE Ve
Thus for t—>o, ve §

dv -
) Wehavcmd‘--—rv so dv= mds
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Integrating within the given limits to obtain v (s )

v .2
r rs
or, fdv—--mfds or vmvy - {1)
¥, 0
mv,
Thus for ve (), S"‘w'T
{c) Let we have L. -rv or dv, =Lt
vV m
vy t
- v,
or, .‘L‘i,....i dt, o, In L.l
v m nvg m
[} o
So ‘e -m1n(1/n)wmlnn
r r
Now, average velocity over this time interval,
Zin
—~inn
n
: f vee m dt
fra < v (n-1)
<vr= fdt " m " ninn
—r—!nn
According to the problem
dv 2 dy
m;t—-u ~-kv* or, m:'i--—kdx

Integrating, withing the limits,

¥

[ 4
dv k m (vp-v)
i [ )
0
Yo
To fine the value of k, rewrite
dv 2 dv k
mvdsa-—kv of, =-mds
On integrating
v ]
fa--ifo
v m
A 0
m. Vo
So, ko h n ” )
Putting the value of k from (2} in (1), we get
h{vy-v)
£ ———

v vlnr-g-
¢ v
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From Newton’s second law for the bar in projection from, F, = mw, along x direction

we get
mg sin o - kmg cos o= mw

dv .
or, VoL gsina-argcosa, (as k= ax),
or, vdv= (gsina —axgcos o} dx
v x
or, fvdv-= gf(sinamxcosu)dx
o 0
V2 ( xz )
So, —= singx-~——acosa i
7 =8 7 (1) N £

From (1) v = ( at gither
x=0 orx= g*tana
a

As the motion of the bar is unidirectional it / mg
stops after going through a distance of &

P
a0 o
a

From {1), for v

max*
2

d ., . x I 1
Ex-(smax- 3 acos & )= 0, which yields x = atana

Hence, the maximum velocity will be at the distance, x = lan a/a
Putting this value of x in (1) the maximum velocity,

v \/gsinatana
==

max a

Since, the applied force is proportional to the time and the frictional force also exists, the
motion does not start just after applying the force. The body starts its motion when F
equals the limiting friction.

Let the motion start after time t; , then
fan
F=aty=kmg or, ty= —;g-

So, for 1 = s 1, the body remains at rest and for £ > ¢, obviously

mdy
e alt-1y) or, mdv=a(t-t}de
Iitegrating, and noting v = {(at 1 = 1, we have fort> ¢,
¥ t
fmdwa af(r t,ydr or vs= —‘L(t 1)
4] Im [2}
0 3

(]
!

» e 8l Ve B P
Thus s-fvdr 2mj(r 1) di 6m(‘ t)
t

a
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.

While going upward, from Newton’s second law in vertical direction :

ydy 2) o 2
m— (mg+kv®) or ) - ds
B+ o
At the maximum height 4, the speed v = 0, so
0 A
[ f4
g+{kv*/m) A
Yo
Integrating and solving, we get,
m b,
Ll -2
h 2km(1+mg] (1)

When the body falls downward, the net force acting on the body in downward direction
equals { mg - kv? )
Hence net acceleration, in downward direction, according to second law of motion

vav W vl
s 8" Tm 2
g._..m..u

Thus f vy fds
- kv/m

Integrating and putting the value of 4 from (1), we get,
vie Vo/ V1+kvi/mg.

Let us fix x — y co-ordinate system to the given plane, taking x-axis in the direction along
which the force vector was oriented at the moment ¢ =(, then the fundamental equation
of dynamics expressed via the projection on x and y-axes gives,

F il 1
oS Em m 4)
and Fsinwre m—2 2
at
. - . F

(a) Using the condition wW(0) = 0, we obtain v_m o sinwt (3)
and

vy--';;%(l-cosmt) @

VT (] (4]
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{b) It is seen from this that the velocity v

tums into Zero after the time interval At
which can be found from the relation, ;Ly !
At /
w—= m. Consequentely, J
2 / F
the sought distance, is /
& At X f=wt
Fd
= f vdl"' &Fz /,'
mw -~
0 -
[va pheeml > ¢

Average velocity, <v> =

fa
Znsw

2F . {fwt 4F
So, <v> =f;—u—) sm(——z—)dt/ {(2x0)= pr—
0

The acceleration of the disc along the plane is determined by the projection of the force
of gravity on this plane F_= mgsin o and the friction force fr = kmg cos . In our case

k= tan o and therefore

fr=F_ «mgsino
Let us find the projection of the acceleration
on the derection of the tangent to the trajectory
and on the x-axis :

mw,= F cos @~ fr=mgsina{cosg-1)

mw m F - frcosp= mgsina(li-cosg)
It is seen fromthis that w, = — w_, which means
that the velocity v and its projection v, differ

only by a constant value C which does not
change with time, i.c.

ve v +C,

where v_w vcos ¢. The constant C is found from the initial condition v= v, whence

) initially. Finally we obtain

C =y, since o =

v=v,/{1+cosp).
In the cource of time ¢ — 0 and v — vy/2. (Motion then is unaccelerated.)

Let us consider an element of length ds at an angle ¢ from the vertical diameter. As the
speed of this element is zero at initial instant of time, it’s centripetal acceleration is zero,
and hence, dN ~Adscos = 0, where A is the linear mass density of the chain Let
T and T+dT be the tension at the upper and the lower ends of ds. we have from,
F,o=mw,

(T+dT)+hdsgsing-T= Msw,

or, AT+ ARdgpgsing= hdsw,
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If we sum the above equation for all elements,
the term f dT = {} because there is no tension

at the free ends, so
/R

?Lngsinq)dqm ?\.w,fa"sn?\.lwI
0

Hence w, = gfi(l -oos}‘;)

As w,_ = q at initial moment

R

In the problem, we require the velocity of the body, realtive to the sphere, which itself
moves with an acceleration w, in horizontal direction (say towards left). Hence it is advisible

So, w==§w,1=g-}?-(1—»cos—l-)

to solve the problem in the frame of sphere (non-inertial frame).

At an arbitary moment, when the body is at an angle 8 with the vertical, we sketch the
force diagram for the body and write the second law of motion in projection form
F = mw,

2
or, mgcosG»-N-—mwcsines—”%— (1)

At the break off point, N = 0, 0= §, and let
v= vyso the Eq. (1) becomes,

2
v,

—R?»- g oos B ~ wysin 6 {2
From, F,= mw,
i 6 8= y_g'_g_' m vdv
mg sin @ - mwg cos 8 =m —- Rdo
or, vdv= R{gsin0+w,cos0)d0
Yo 9

Integrating, f vdv= f R (g sin® + wycos0)d 0
0 o

2

;% m g(1 - cosBy) + w, sin G, 3)

Note that the Eq. (3) can zlso be obtained by the work-cnergy theorem A= AT (in the
frame of sphere)

therefore, mgR (1 ~cos 6, ) +mwyRsin 8, = %mvez
[here mw, R sin 0, is the work done by the pseudoforce (- mw,)]
2
Vo

of, —ﬁag(l—cosﬁﬂ)ﬁ»wusinﬁa
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Sclving Eqgs. (2) and (3) we get,

2+kV 5492

w,
3 ,wherck=--9~
3(1+k7) g

vg = V2gR/3 and Bgzms'l[
Hence 8, [wn-x" 17

This is not central force problem unless the path is a circle about the said point. Rather
bere F, (tangential Torce) vanishes. Thus equation of motion becomes,

v, = V= conslant

mii A
and, ——= — for r=1,
r r
We can consider the latter equation as the equilibrium under two forces. When the motion
is perturbed, we write 7= 7y + x and the net force acting on the particle is,

A myg A (. mx\ mvel x\ my
- P W2 N PO 3 YN OR3P PR
(r0+x) TetXx Ty Yo Ta Ta To

2
my
This is opposite 1o the displacement x, if n< 1- (——r—o— is an outward directed centrifugul

force while :——?—- is thé inward directed external force).
r

There are two forces on the sleeve, the weight F, and the centrifugal force F,. We resolve

both forces into tangential and normal component then the net downward tangential force

on the sleeve is,
2

mgsing |1 - @ = cosB
This vanishes for 8= 0 and for O

B 0y= cos”! (-«S-m] which is real if

>R
2

MWARSin@Cos @
w2R>g. Ifm2R<g, then 1 -~ R

&

cos 8
> MWt RSinO=Fz

is always positive for small values of 6 and
hence the net tangential force near 6= 0 (f
opposes any displacement away from it
0= 0 is then stable.

2 o’ R
Ifwo'R>g, 1- -Ewcosﬁ is negative forsmall

mgSzna mg =f g Cos@+mutRSin*

O near 8= O and 6 = O is then unstable.
However 8= §; is stable because the force tends to bring the sleeve near the equilibrium
position 6= @

If o’R= g, the two positions coincide and becomes a stable equilibrium point.
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Define the axes as shown with z along the local vertical, x due ¢ast and y due north. (We
assume we are in the northern hemisphere). Then the Coriolis force has the components.

F=-2m@xv)

= 2mw [ v, cosO - v, sinb) ic v, oosB;T: v, cosf k}= 2mo (vy cos - v, sinB) i

since v, is small when the direction in which e gun is fired i8 due north. Thus the
equation of motion (neglecting centrifugal forces) are

e 2mo (v, sing ~ v, cos), ye0and z = -g © (r 'ét'Na rth

z—\/é’?'éicaz
x,f_aSt

Integrating we get y = v (constant), z= - gr
and = 20 vsing ¢ + mg £ cosp
Finally,

2 . 1 3
X= ovising + 3 wgt” cosg

Now v »>> gf in the present case. so,
2
L &
X = @V sing (;) = wsing

~ 7 cm (to the east),

The disc exerts three forces which are mutuaily perpendicular. They are the reaction of
the weight, mg, vertically upward, the Coriolis force 2mv’ o perpendicular to the plane of
the vertical and along the diameter, and mw’r outward along the diameter. The resultant
force is,

F=mV g +0*r+ (2 o)

The sleeve is free to slide along the rod AB. Thus only the centrifugal force acts on it
The equation is,

. 2 dr
myv= my r whete v= -gt-

Buty= vé}-- _‘?3_.(!.‘,2)

dr dri2
1
50, —i—vz = 5- m2 1"2 + constant
of, v:z - v% + m2 r2

v, being the imitial velocity when r = 0. The Coriolis force is then,

2mo Vi + 0* P = 2me’ rVi + vi/0* P

= 2-83 N on putting the values.
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The disc OBAC is rotating with angular Ol
velocity w about the axis OO’ passing through
the edge point O, The equation of motion in % )w
rotating frame is,

m”w~-?+mw2§*+2m?x5’- F-r.ﬁ, 8

whnm;‘; is the resultant inertial forc. (psendo 7 '\
force) which is the vector sum of centrifugal 0 A
and Coriolis forces.

(a) AtA,F, vanishes. Thus 0= - 2mw? R n+2my on

c

A
where 7 is the inward drawn unit vector to the centre from the point in question, here A.
Thus, v = oR

E_Bhemnenlt Elausedt | 2
50, W R w’R.

—

2 e 2 g
{b) AtB F, = mo*OC +me”BC
its magnitude is mo? VAR? - ri, where r= OB.
The equation of motion in the rotating coordinate system is,

m;v"-?-bmwziia-%(?x&’)')

. W
Now, ~ ¥'= ROg;+Rsin6ge, P
' N
and ;v*‘-w'coseE:-w’sinGE;
e Z P
12 - b v
5-Fw=| 0 RO Rsin8§ cf

wcos® ~wsin b 0 mg
= & (0R sin’0 §) + R sin 6 cos B ¢ 5~ WR 8 cos 6 ¢,
Now on the sphere,

Ve (-RO*-RsinB¢h e
+(RO -RsinBcos0¢?) 2y
+(RsinB¢'+2RcoSBG§J)E;
Thus the equation of motion are,
m(-Réza-RsinzB(pz)-N-mgcosB+mm2Rsin29+2mesin29§)
m(RE -RsinBcos 0¢>) = mgsin 0 + mw’ R sin 6 cos 6 + 2mw RsinBcos 0 ¢
m(Rsin@p +2Rcos 00 )= ~2mw RO cos O
From the third equation, we get, @ = - @

A result that is easy to understant by considering the motion in non-rotating frame. The
eliminating ¢ we get,

mR 0 = mgcos 8- N

mRE = mgsin @
Integrating the last equation,

%mké’- mg (1 - cos 6)
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Hence N (3-2cosB)ymg
So the body must fly off for 8= §; = cos™? -§-, exactly as if the sphere were nonrotating,

Now, at this point F .= centrifugal force = mo’ R sin 0, \/ % mo’ R

o™ vV o* R 0* c0529+(w2R2)2 sin 8 x 2m
2 2 4 2 2 2 8
\/ (m R) +me9x3R x 2Zm 3mu)R S+3w2R

(2) When the train is moving along a meridian only the Coriolis force has a lateral
component and its magnitude (see the previous problem) is,

Zmovcos B = 2mwsin A

(Here we have put RO — v)
2 54000 34000 V3 vi
86400 © 3600 2

= 3-77TkN, (we write A for the latitude)

(b) The resultant of the inertial forces acting
on the train is,

So, Frou = 2 %2000 x 10° x

F = -2moR O cos B e,
+(mw’RsinBoos6+2muwRsinBcosB ) ey

v

+(mw*Rsin0+2mwRsin’09)e,

This vanishes if 8= 0, p= - %m

J ey

1 . 1
Thus v=v$e¢,vv-—-E-u)RsmBu—Echosh

(We write A for the latitude here)
Thus the train must move from the east to west along the 60" parallel with a speed,

L 120 0637k 105 115
2(DR coS A= 3%36a " 107" x 637 x 10" = 1158 m/s = 417 km/hr
We go to the equation given in 1.111. Here v, = 0 so we can take y= 0, thus we get for
the motion in the x z plane.
x = =20y, cos

and ZI= g

. 1
integrating, z= -5

X= mgc(:oscpr2
32

So xulm cos 13-103 cos —2}-}-

J20h 7R
3 ¢ g

There is thus 2 displacement to the cast of

2 2% VD
3x864x500x1x 98 26 cm.,
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1.119

1120

1121

Laws of Conservation of Energy, Momentum and Angular Momentum.

g
As F is constant so the sought work done
e —
Aw FAr= F-(7y-7;)

of, Aw 3i+4f 3 [(i-37)-(+2j )= (3i+4j)-(i-5])=17F
Differentating v (s) with respect to time
dv _a a's a
g e

(As locomotive is in unidrectional motion)
2

Hence force acting on the locomotive Fumw = E—;—

Let, at v= Oat ¢ = ( then the distance covered during the first ¢ seconds
1.5 1a 5 a ,

“*“‘"W

S L L
2,272 4.2
Hence the sought work, A= Fs= mae @t) mat
2 4 8
We have
T= %mvzn as® or, V= 2a’ (1)
Differentating Eq. (1) with respect to time
2yw, = i‘-ﬁt—-‘iv or, wn~2—-‘-]—s- 2]
m m

Hence net acceleration of the particle

wm\/(%g)(&ﬁ) 2as [ TTRY

mR m
Hence the sought force, F = mw= 2asV1 + (.fr/R)2

—p
Let F makes an angle 0 with the horizontal at any instant of time (Fig.). Newton’s second
law in projection form along the direction of the force, gives :

F = kmg cos 8 + mg sin 0 (because there is o
acceleration of the body.)

ASF t 1 drthe differential work done by the force ? ,
dA=F-d7= Fds, (where ds = | d7™]) N
= Jang ds (cos 8) + mg ds sin ©

= kmg dx + mg dy. >
! ) X
Hence, A = kmg dx+mgfdy
0 0 01?
= kmgl+mgh= mg(kl+h). >1 ¥
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1122 Let s be the distance covered by the disc along the incline, from the Eq. of increment of
M.E. of the disc in the field of gravity : AT+ AU= A,
O+ (-mgssina)= - kmgcos as ~kmgl
kil

on $* Sma-keosa @)
Hence the sought work N
Ap= —kmglscosa+1] 2 é)
. kimg . <
A, I fooia [Using the Eqn. (1)}

On puting the values Ap = ~0.05J

123 Let x be the compression in the spring when the bar m, is about to shift. Therefore at this
moment spring force on m, is equal to the limiting friction between the bar m, and horizontal
floor. Hence

Kxm= kmyg [where x is the spring constant (say)} ¢3]
For the block m, from work-encrgy theorem ; A = A7 =  for minimum force, {4 here
indudes the work done in stretching the spring.)

50, Fx—%xxz—kmgxu 0 or x%- F-Jm g @,
From (1) and (2),

e
Fwikglm + 5 F
1124 From the initial condition of the problem the limiting fricition between the chain lying on
the horizontal table equals the weight of the over hanging part of the chain, i.c.
Arylg = kA(l~n}lg{where A is the linear N
mass density of the chain)
So, k= T{l};’ 1)
Let {(at an arbitrary moment of time) the length f r X
‘of the chain on the table is x. So the net friction
force between the chain and the table, at this AX
moment : 8‘
f,= kN=kAxg ')

The differentizl work done by the friction forces :

M-f-d?’-—f,dS"--k?sxg(—dx)-lg('l'{};)xdf 169

A(-X) 8

WSO

{Note that here we have written ds = - dx., because ds is essentially a positive tenn and
as the length of the chain decreases with time, dx is negative)

Hence, the sought work done
0

Aﬂf lg'i"?';l‘xdx- -{1-m) 1]2!"2&{' -137

(-u)l
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The velocity of the body, ¢ seconds after the begining of the motion becomes
e '13";+ g't. The power developed by the gravity (m g') at that moment, is

Pumg vem(g- §;+g2t)umg(gt-—vusina) (1
As mg’ is a constant force, so the average power
A mg-AF
<P> - ;" - -

where A7 is the net displacement of the body during time of flight.

As, mg LA 80 <P>w 0

We have w, = -‘g—- at’, or, v=vaRy

t is defined to start from the begining of motion from rest.
So, W, = %a vak

.
Instantaneous power, P=F - V= m(w,u,+ w, i, ) - (VaR tu, ),
A A
(where u, and u, are unit vectors along the direction of tangent (velocity) and normal

respectively)
So, Pw= mw,VaR t = ma Rt

Hence the sought average power
t i
f Pdr f ma Re dt
P> m o’ ol
t

fdt

[
maRt> maRt

2t 2
Let the body m acquire the horizontal velocity v, along positive x - axis at the point O.

Hence <P> =

{a) Velocity of the body f seconds after the begining of the motion,
R nes A ) il
v v+ wi= (vo-kgt)i M)
Instantaneous power P m F-vm (—bngm-(va~kgt) im ~ kmg (v, - kgt )
From Egq. (1), the time of motion €t = v,/kg
Hence sought average power during the time of motion
b1

f‘bﬂg("e“kﬂ)df

0 kmg vy -
<P>m - -y 2W {On substitution)
From F_ = mw,
dv,
~kmg = mw, = Yy

or, v,dv,= —kgdx = - agxdx
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21 ]

To find v {x), let us integrate the above equation
v

x

fvxdvx- - agfxdx or, Ve vi-ag? (1)
g [
Now, PaF-v% -moaxgVvi-ags [0}
. A (T E o N Yo
For maximum power, -&}'( VX"~ Agx ),. 0 which yields x = Viag

Putting this value of x, in Eq. (2) we get,
Powm - Aoy

Centrifugal force of inertia is directed outward along radial line, thus the sought work
2

A= f mew’ rdr = %m&}z (r% - f) = 020T (On substitution)
!

Since the springs are connected in series, the combination may be treated as a single spring

of spring constant.

- 1¥2
K1+K2
From the equation of increment of ME.,, AT+AU=A_,
K
0sleartaa, o A L[ )4
yJ 2 K1+K2}

Fizst, let us find the total height of ascent. At the beginning and the end of the path of
velocity of the body is equal to zero, and therefore the increment of the kinetic energy of
the body is also equal to zero. On the other hand, in according with work-energy theorem
AT is equal to the algebraic sum of the works A performed by all the forces, i.e. by the
force F and gravity, over this path. However, since AT= 0 then A = 0. Taking into
account that the wpward direction is assumed to coincide with the positive direction of the
y - axis, we can write

B k
= —
A*I(F-rmé]'-d r=f(Fy—-mg)dy
0 o
B
= mgf(l—Zay)dy- mgh{l -ah)= 0.
o

whence A= 1/4a.
The work performed by the force F over the first half of the ascent is
W2 2

AF-nydys- ngf(l -~ ay)dy= 3 mg/4a.

0 0

The corresponding increment of the potential energy is
AU= mgh/2= mg/2a.
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From the equation F, = - %rq we get Fo= [ - -;2‘—‘-;— + ;%]

(a) we have at r= r,, the particle is in equilibrium position. i.e. F, = 0 so0, ry= %‘5—

To check, whether the position is steady (the position of stable equilibrium), we have to
satisfy

% >0
d*U [6a 2b
We have 7 [F—F]
Putting the value of r=ry= -Zf-, we get
‘i;g = f;; , (as @ and b are positive constant)
So, éjg - ~t~’f§ >0,
dr 8a

which indicates that the potential energy of the system is minimum, hence this position
is steady. :

di 20 b
{b) We have Frsudr.{-rs.,.rz}
For F, to be maximom, ——m= 0
dr

3a -b
SO, ¥ o= “‘B"‘"ﬂnd thenFr(m)- ;’7‘;‘5,
As F_is negative, the force is atiractive,
{a) We have

al -3qU
F = - -2axand F = = -2By

So, F=20xi-2Byiand, F= 2V al2+ 2y 1)

— o
For a central force, rx Fw {}

> s e ™ Pt
Here, rxFm(xi+yj}x(-2a0xi-2Byj)

s -
= -2Bxyk-2axylk )m O

Hence the force is not a central force.
®) AsU= ax’+ By

auv 14
So, F,mmé";#—Z(xx and F = wé;—*s -2f8y
So, Fn\/ﬁf+ﬁ'§m\/4a2xz+4ﬁzyz

According to the problem

Fu2Vais®s 52 ? = C (constant)
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c?
or, Py = Y

2 ¢

or, e L e e i 2 LT 2
BZ az o] azﬁz ( Y) ( )

Therefore the surfaces for which F is constant is an ellipse.

For an equipotential surface U is constant.

So, ax’+By’= C, (constant)
2 2 c
or, TP A N K, (constant)

VE Ve af

Hence the equipotential surface is also an ellipse.
Let us calculate the work performed by the forces of each field over the path from a
certain point 1 (r,, y,) to another certain point 2 (x,, y,)

5
() dA= F-di= ayi-dr= aydx or, A= afydx-

*

(i) dA=F-di= (@xi+byi)-dr= axds +bydy
% ¥y

Hence A -faxdx +f bydy
* ¥

In the first case, the integral depends on the function of type y (x), i.e. on the shape of
the path. Consequently, the first field of force is not potential. In the second case, both
the integrals do not depend on the shape of the path. They are defined only by the coordinate
of the initial and final points of the path, therefore the second field of force is potential.

Let s be the sought distance, then from the cquation of increment of M.E.
AT+AU = A,

( -—l-mvﬁ)-o-(-:-mgssiua)z ~kmg cos o s

2
2
Yo .
or, §= 2gl(sma+kcosa)
-»Icmv%
Hence Ap= ~lmgcosasw m‘*&;

Velocity of the body at height &, v, = v 2g (H - k), horizontally (from the figure given in
the problem). Time taken in falling through the distance A.

t= V ~2~§~ (as initial vertical component of the velocity is zero.)

Now s=v,t= V2g(H +h) x V% = V4(Hh-—h2)
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For s, f; (Hh - 1% = 0, which yields & -g-

Putting this value of A in the expression obtained for 5, we get,
Spux = H

To complete a smooth vertical track of radius R, the minimum height at which a particle
starts, must be equal to %R (one can proved it from cnergy conservation). Thus in our

problem body could not reach the upper most point of the vertical track of radius R/2.

Let the particle A leave the track at some point O with speed v (Fig.). Now from energy
conservation for the body A in the field of gravity :

mg{k—-g-(l +s§n9)}u ~12--mv2

or, v = gh(l -sin 0) {1
From Newton’s second law for the particle at

the point O; F, = mw,, / '
mv? v
NiemgsinOe M A
But, at the point O the normal reaction N = 0
So, V- %ﬁsin 8 @ ¥

From (3) and (4), sin 0 = 5 and v= "}/ %f‘-

After leaving the track at O, the particie A comes in air and further goes up and at maximum
height of it’s trajectory in air, it’s velocity (say v') becomes horizontal (Fig.). Hence, the
sought velocity of A at this point.

Ve veos{90-0)= vsinO= %V%&

Let, the point of suspension be shifted with velocity v, in the horizontal direction towards
left then in the rest frame of point of suspension the ball staris with same velocity horizontally
towards right. Let us work in this, frame. From Newton’s second law in projection form
towards the point of suspension at the upper most point (say B) :

2 2

my my
mg+T= ""l"g or, T= '"'}"E-mg ®H

Condition required, to complete the vertical circle is that 7= 0. But 2

L= mg 2D+ 3m So, m v~ dgl ©)
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From (1), (2) and (3)
m (vi ~4gl)

T "mw-l-“m-mgz() or, v = V5gl Va B

- T
e { ‘.\
Thus VA (min) ™ Vsgl e Y7 N
1
v

From the equation F_ = mw, at point C

2 T |
=3 {4 \\ l /
Again from energy conservation \"\M ’/’/
—Iz-mvi - %mvf +mgl A Va 3)
From (4) and (5)
T= 3mg

Since the tension is always perpendicular to the velocity vector, the work done by the
tension force will be zero. Hence, according to the work energy theorem, the kinetic energy
or velocity of the disc will remain constant during it’s motion. Hence, the sought time

k3 . N . . . .
t= oo where s is the total distance traversed by the smail disc during it’s motion.
o

Now, at an arbitary position (Fig.)
ds= (I,-R0)d0,

i’/R

50, s-f(lo-—Re)de
o

B ORI Wi

of1, S - E-—Ei-—ﬁ

2
N !
2Ry,
It should be clearly understood that the only uncompensated force acting on the disc A
in this case is the tension 1, of the thread. It is easy to see that there is no point here,

relative to which the moment of force T Is invarible in the process of motion, Hence
conservation of angular momentum is not applicable here.

Hence, the required time, ¢

Suppose that Al is the clongation of the rubbler cord. Then from energy conservation,
AUJ, + AU, = 0(as AT = 0)

or, —mg(l+Al)+%—xAlz-0

1

ZKAIz—mgA!—mgl =0

of,
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K
mg+\J (m )2+4x—-ml
ot, Al = d \/ & 278 x XL _”15[1,,,-\/1*2,_‘5!]
2 x mg

ng-

Since the value of V 1+ —;2;% is certainly greater than 1, hence negative sign is avoided.

_me(;,+/ 151)
So, N—K(l«r 1+mg

When the thread B4 is bumt, obviously the speed of the bars will be equal at any instant
of time until it breaks off. Let v be the speed of cach block and 0 be the angle, which
the elongated spring makes with the vertical at the moment, when the bar A breaks off
the plane. At this stage the clongation in the spring.

Al= lysec O~ Iy =, (sec @ - 1) (1)
Since the problem is concerned with position and there are no forces other than conservative
forces, the mechanical energy of the system (both bars + spring) in the field of gravity is
conserved, i.e. AT+ AU = §

So, 2 %riwz]-p—%xloz (sece-—i)z—mglatanf)n 0 )

From Newton’s second law in projection form
along vertical direction :

mg= N+xl(secO-1)cos 8 K‘EG(SQLQ-I) 9
But, at the moment of break off, N = 0. -
Hence, x l;(secB~1)cos 8 = mg

|
Kly-mg
of, cos@= —uou—— 3
Kl
5m mg’
Taking x = 7 8 simultaneous solution\of {2) and (3) yields :
0
19gl,
Ve B 17T m/s.

Obviously the elongation in the cord, Al= [, (sec § - 1), at the moment the sliding first
starts and at the moment horizontal projection of spring force equals the Hmiting friction.
So, K, Alsin@= kN . (1)

(where x, is the elastic constant). Kﬁl\g‘f‘N

From Newion’s law in projection form along
vertical direction :

K, Alcos 6+ N = mg. | Lafr

or, N= mg-x,Mcos 8 - 2}
From (1) and (2),

K; Alsin @ = k(mg - x; Af cos 6) Y mg



e

Ky = kmg

17 Alsin @ + k Al cos ©
From the equation of the increment of
mechanical energy : AU+ AT = A,

of,

1
of, (EKRAIE)-Af,
or kmg Al® -4
 2Al(sinO+kcos0) I
Th 4 kmg Ly (sec B~ 1) 009 bstituti
us 7 3 (sin O - koos ) {on substitution)

1.142 Let the deformation in the spring be Al, when the rod AB has attained the angular velocity w.
From the second law of motion in projeciion form F, = mw,_ .
2
ma” |
xAl=mo(l,+AD or, Al= m.,m.mz“
0 [) K = moy

. 1
From the energy equation, A, = %mvz +5x Al 2

1 2 2 1 2
zmw (lo + Al) +2rcAl

2 2
1 2 maw? I 1 mow? 192
- 3 ma” | i+ 5] + -2— X 3

K - 1w K - mw
Brn(s+m 2
On solving A, = ‘—(-, where 1 = me.
<z (-w K

1.143 'We know that acceleration of centre of mass of the system is given by the expression,

— i
— ,ml w1+m2 W2

W=
¢ mytmy
Since "w: - ;vz
o
— (my~m)w
We= ey
my +m,

-
Now from Newton’s second law F = mw, for
the bodies m,; and m, respectively.

Temg'= m W, @

and ?+m2§'— mzﬁ;-—mz;ﬂ {3)

Solving (2} and (3)

g.‘; - S'_’f.é.,“;f,"_%,).ﬁ 4 mlg

7y +
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Thus from (1}, (2) and (4),

1.144 As the closed system consisting two particles
m; and of m, is initially at rest the CM. of

the system will remain at rest. Further as
my = m,/2, the C.M. of the system divides the

line joining m, and m, at all the moments of

time in the ratio 1 : 2. In addition to it the
total linear momentum of the system at al} the
times is zero. So, ﬁ; - -;3; and therefore the

velocities of m, and m, are also directed in

opposite sense, Bearing in mind all these thing,
the sought trajectory is as shown in the figure.

1.145 First of all, it is clear that the chain does not
move in the vertical direction during the
uniform rotation. This means that the vertical
component of the tension T balances gravity.
As for the horizontal component of the tension
7, it is constant in magnitude and permanently
directed toward the rotation axis. It follows from
this that the CM. of the chain, the point C,
travels along horizontal circle of radius p (say).
Therefore we have,

TeosO= mg and Tsin G w mmzp

Thus p= E_f.“;%ﬁ.,, 0-8 cn
w

and T~ 2B . .SN
cos 0

1.146 (a) Let us draw frec body diagram and write Newton's
second law in terms of projection along vertical aud

horizontal direction respectively. iy
< L
Nceosa-mg+ frsina=0 (1 S
ol
frcosa—Nsina-mwzl (2)

r

From (1) and (2)

sin o
€os &

freosa - (- frsina+mg) = mo” 1 \
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w2}l
Se, fr=mg sina+-~§—~oosa = 6N 3)

(b) For rolling, without sliding,
frs kN

but, Nw mgcosa~mw?Isina
w1l 2
mg sina-l-mémcosa < k{mgcosca-maolsina) [Using (3)]

Rearranging, we get,

me?i(coso+ksina) s{kmgcosa~mgsinat)

Thus wsYg(k-tana)/(1+ktana )l = 2 rad/s

(a) Total kinetic energy in frame K ' is
1 —n > 1 —_—
T= zm(vi-V 4 5m(v;-V )

il
This is minimum with respect o variation in V, when

4 L e —
6—1.:*,*0, ie. ml(vluV)2+m2(v2-V)-O
av
— —
- mv+mV,
0!' W T T—T—— R
my +m, ¢

Hence, it is the frame of C.M. in which kinetic energy of a system is minimum.

(b) Linear momentum of the particle 1 in the K’ or C frame

o~ m.m
=m, (v, -v. }= vV, -V
P 1{ 1 "} m1+m2( 1 2)

g . =
or, pi= p{v;-v,y), where, u= S reduced mass
Similarly, o= n(¥-v1)
o iy ~
So, |pil=|psl=P=nvy where, v = |V]-V;| (3

Now the total kinetic energy of the system in the C frame is

Hence T= %—p.v,d=
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1.150

To find the relationship between the values of the mechanical energy of a system in the
K and C reference frames, let us begin with the kinetic energy T of the system. The
velocity of the i-th particle in the K frame may be represented as v, = v, + v, . Now we
can write

1 1 = =

1 7 s =p 1 2
- 2 5 m¥; *“’cz m,.v1+2 5 ™ Ve
Since in the C frame E m 3:' = 0, the previous expression takes the form

= 1 = 1

T=T+ ~2-—m vg = T+ 5

Since the internal potential energy IJ of a system depends only on its configuration,
the magnitude U is the same in all refrence frames. Adding U to the left and right

hand sides of Eq. (1), we obtain the sought relationship

mv? (since according to the problem v, = V') 1)

E—E-&%mVZ

As initially U= U= 0, so, E= T
From the solution of 1.147 (b)

~ 1
Tm "Z'uf;:';;f,

As viivy
> 1 mm
Thus T-2ml+m2(1ff+v§)

Velocity of masses m, and m,, after t seconds are respectively.
i © — e a g ! — i
SV = vokgland vy = Y+ gL
Hence the final momentum of the system,
it P e —- i gy
P=mv, +myvy, = mvi+mvy+(m +my)gt

— - —n —» —»
= py+mgt, (where, py= myv, +myv, and m= m, +m,)

. 1
And radius vector, Tom F‘Et-t-—iwctz
ey —
(mvitmaw)t 1 ..,
—_— Ty pt
{m; + my} 2

1 m 3'+n1217'

= Vot +g1°, where v = —_— 2

2 m; +m,
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1.151 After releasing the bar 2 acquires the velocity v,, obtained by the energy, conservation :

1.152

1.153

%mzvg-u %xxz or, vy= x‘\/ ;K; {1
Thus the sought velocity of CM.

/K
0+m2x m, x\/mz“

m, +m, ‘(ml+m2)

vtﬂl

Let us consider both blocks and spring as the physical system. The centre of mass of the
sysiem moves with acceleration g = Tg_r_n- towards right. Let us work in the frame of
1 2

centre of mass. As this frame is a non-inertial frame (accelerated with respect to the
ground) we have to apply a psende force m, a towards left on the block m andm; g
towards left on the block m,

As the center of mass is at rest in this frame,

the blocks move in opposite directions and

come to instantaneous rest at some instant. The
elongation of the spring will be maximum or ma <
minimum at this instant. Assume that the block <~— M), /ﬁ'ﬁm m, —

m, is displaced by the distance x, and the block TR IT 777777 77
m, through a distance x, from the initial

positions.
From the energy equation in the frame of C.M.
AT+ U =4,

{where A_, also includes the work done by the pseudo forces)

7?72 o

Here,

AT=0, U-%»k{xl +x, and

(F~m2F] m, F m F{x +x,)
Wcﬂ" X E3

m, +m, m +my, " m, +m,
1 , M (x,+x,) F
or, —k{x +x) = ————
’ 2 by +x5) m, +m,
s 0 Zm, F
14 Xyt Xy ™ or, X, + X, = T
1+X; 1 2
? * k{m, +m,)
. . Zm F
Hence the maximum separation between the blocks equals : [, + —ro
k{m, +my)

Obvicusly the minimum sepation cotresponds to zero elongation and is equal to [

(a) The initial compression in the spring Al must be such that after buming of the thread,
the upper cube rises to a height that produces a tension in the spring that is atleast equal
to the weight of the lower cube. Actually, the spring will first go from its compressed
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state to its natural length and then get clongated beyond this natural length. Let ! be the
maximum elongation produced under these circumstances.

Then
wl=mg )
Now, from energy conservation,

%KAIZ-mg(M+I)+%—KI2 @

(Because at maximum clongation of the spring, the speed of upper cube becomes zero)
From (1} and (2),

2
Alzw_megAl_?ﬁmzﬁ_ 0 or, Al= 3r:g’ ;ng
K

Therefore, acceptable solution of Al equals l’i}&

(b) Let v the velocity of upper cube at the position (say, at C ) when the lower block
breaks off the floor, then from energy conservation.

%mvzs %K(Alz-lz)-mg(l+Al)

(where [ = mg/x and Al = ?«"'1‘5-)

oz, Ve 32 ﬂxé )

mv+Q v

At the position C, the velocity of C.M; v, = "3 ~Let, the CM. of the system

2g 8¢ K
But, uptil position C, the C.M. of the system
has already elevated by,

Al+D)m+0  dmg
A= = m =%

(spring+ two cubes) further rises up to A yeo. T ;'"': Tu
. H
Now, from energy conservation, t bt
1 i
5 (2m) v m (2m) g Are., |
2 | B
1
Y I
o, Ayg=:ts= Y. 4mg |
i
i

&

Hence, the net displacement of the C.M. of
the system, in wpward direction

8mg

K PR

Aye= Ay +A Y=

Due to ¢jection of mass from a moving system {whick moves due {o inerfia) in a direction
perpendicular to it, the velocity of moving system does not change. The momentum change
being adjusted by the forces on the rails. Hence in our problem velocities of buggies
change only due to the entrance of the man coming from the other buggy. From the



L155

1.156

1.157

81

Solving (1) and (2), we get

V= M":Vm and v, = MA{Vm
As Vbl vVand v 145"
- —
So, V= —"— and g My __
M-m) M~ m)
From momentum conservation, for the system “rear buggy with man”
Mem)vg=m(@+vg)+Mvg 1)

From momentum conservation, for the system (front buggy + man coming from rear buggy)
Mg+ m(+vg )= (M+m)vy

= M;; m e
So, Vp= M+m+M+m(u+vR)
Putting the value of v from (1), we get
e Tl
(M + m)

(i) Let 17; be the velocity of the buggy after both man jump off simultaneously. For the
closed system (two men + buggy), from the conservation of lincar momentum,
My +2m{d+v;)= 0

—
— ~ 2mit

or, VL™ W1 om (¢))

(i) Let 7" be the velocity of buggy with man, when one man jump off the buggy. For

the closed system (buggy with one man + other man) from the conservation of linear

momentum

0w M+mv” +m@usv) e
Let 17; be the sought velocity of the buggy when the second man jump off the buggy; then
from conservation of linear momentum of the system {buggy + onc man) :

M+m)v = MV, +m (i +vy) ()

Solving equations (2) and (3) we get

- m@Ms3miu
2% M+ m) (M + 2m)

“

From (1) and (4)
Vs m

“';'1'- 1+m2(M+m)>1

Hence v, > v,

The descending part of the chain is in free fall, it has speed v= V2 gh at the instant, all
its points have descended a distance y. The length of the chain which lands on the floor
during the differential time interval dt following this instant is vdt.
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For the incoming chain clement on the floor :

From dp, = F, dt (Where y — axis is directed down}
O~(Avdt)ym Fydt

or Fy= -AV= -2Agy

Hence, the force excrted on the falling chain

equals A v and is directed upward. Therefore

from third law the force exerted by the failing

chain on the table at the same instant of dy — —
¢

time becomes A v’ and is directed downward. ”u"
Since a length of chain of weight (Ayg) already lics on the table the total force on the
floor is (2iyg) + (Avg) = (3hyg) or the weight of a length 3y of chain.

Velocity of the bali, witk which it hits the slab, v= V2 gh

}¥

After first impact, v/ = ev (upward) but according to the problem V' = ;}v_, S0 €= % 1)

and momentum, imparted to the slab,
wmy—{=mv ) mv(l+e)
Similarly, velocity of the ball after second impact,
Vis eV = 22 Vv
And momentum imparted = m (V.4 v )= m(l + €} ev
Again, momentum imparted during third impact,
= m(l+e) ezv, and so on,

Hence, net momentum, imparted = mv {1 + ¢} + mve (i + ) + mve” {l+e)+...

= mv(l +e)(1+e+e2+.,.)

- mvg—t—j%, (from summation of G.P.)

( 1
1+ :E
- V2gh . mvV2gh [ (n + 1)/ { ~ 1) (Using Eq. 1)
1 ——
i)
= (-2 kg m/s. (On substitution)
(a) Since the resistance of water is negligibly small, the resuitant of all external forces

acting on the system “a man and a raft” is equal 1o zero. This means that the position of
the CM. of the given system does not change in the process of motion.

ic. ro= constantor, AFz= 0 ie % mAR=0

o1, m(AF,;,, +AF;,)+MA?; =0
Thus m(r'+3+Ml_; 0, o, Im- ml”
’ o m+M

(b) As net external force on “man-raft” system is equal to zero, therefore the momentura
of this system does not change,

So, Om m{v" )+ D]+ M, ()
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(a) Since the resistance of water is negligibly small, the resultant of all external forces
acting on the system “a man and a raft” is equal to Zero. This means that the position of
the C.M. of the given system does not change in the process of motion.

ie. Fo= constant or, Arp= 0 ie. E m Ar = 0

or, m(Ar‘-,:M +Ar—;)+MAr—;, =0
¥ —r b i o mr'
Thus, m(T +1)+Ml=0, or 1=

(b) As net external force on “man-rafi” system is equal to zero, therefore the momentum
of this system does not change,

So, 0=m{v +n O ]+Mu )
50 - -2 0

As v () or 5;(1) is along horizontal direction, thus the sought force on the raft
Mdn©  Mm dv ()
dt “m+M  dt

Note : we may get the result of part (a), if we integrate Eq. (1) over the time of motion
of man or raft.

In the refrence frame fixed to the pulley axis
the location of C.M. of the given system is

described by the radius vector
— MAI'—;i-(M»m)A;;M_M}-!-m Ary
Te= M
el
But  Afg= ~AFp
and AF:-AF:‘{M_M) + AF(;,““) (M-m)}+m
kg
— m r’
Thus Arow= A

Note : one may also solve this problem using momentum conservation.

Velocity of cannon as well as that of shell equals V2 gl sin o down the inclined plane
taken as the positive ¥ — axis. From the linear impulse momentum theorem in projection
form along x - axis for the system (connon + shell) i.e. Ap = F Ar:

peosa~MY 2glsina = Mgsino At (as mass of the shell is neligible)
peosa-MV 2glsina

Mgsina
From conservation of momentum, for the system (bullet + body) along the initial direction
of bullet

of, At=

m+M

mvy= {m+M)v, or, v=
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When the disc breaks off the body M, its velocity towards right (along x-axis) equals the
velocity of the body M, and let the disc’s velocity’in upward direction (along y-axis) at

that moment be v’y

From conservation of momentum, along x-axis for the system (disc + body)
my

m+M ®
And from energy conservation, for the same system in the field of gravity :

—l—mvzw —12-(m+M)v’3+

mv= (m+M}V, or v =

i .
mv', +mgh',

where b’ is the hezight of break off point ffom initial level. So,
£imv2= }-(m+M) v 1mvziﬂmgh' using (1)
2 2 M+m) 2
or Vie V2o my? -2 gh
’ ¥ (m+ M)
Also, if A" is the height of the disc, from the break-off point,
then, v’i = 2 gh"
mv?
So, 2 (W + 1 )= v - Grm
Hence, the total height, raised from the initial level
f t v2
=K +h'= m

{a) When the disc stides and comes to a plank, it has a velocity equal to v = \fz_g—}; . Due
to friction between the disc and the plank the disc slows down and after some time the
disc moves in one plece with the plank with velocity V' (say).
From the momentum conservation for the system {disc + plank) along horizontal towards
right :

my
m+M
Now from the equation of the increment of total mechanical energy of 2 system :

mv=(m+M)v or v'=

1 2 1 2
E(M+m)v -5 my = A,

22

1 my 1 3
or, =M+ m) s - =MV = A
2 (m+M* 2 !
1 o[ m |
80, Ev [M+m ml Afr
mM
Hence, Ag = ~(m+M)gh= - ugh

(where K= mM
m+M

= reduced mass)
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(b) We look at the problem from a frame in which the hill is moving (together with the

disc on it) to the right with speed & Then in this frame the speed of the disc when it just

gets onto the plank is, by the law of addition of velocities, ¥ = u +V2gh. Similarly the

common speed of the plank and the disc when they move together is

VR,
1.

.
V==l£+

Then as above Afr - --(m + M) v? m - Mm:z

2

1 2 m’ i 2 1
.2(m+M) {u + u\' ?i«t» M)ZZgh}w-i(JnﬁAM)u -»2m2uVZth-mgh
We see that Zﬁ, is independent of 4 and is in fact just - p g h as in (a). Thus the result
obtained does not depend on the choice of reference frame.

Do note however that it will be in correct to apply “conservation of enegy’ formula in
the frame in which the hill is moving. The energy carried by the hill is not negligible
in this frame. See alsé the next problem.

In a frame moving relative to the earth, one has to include the kinetic energy of the earth
as well as earth’s acceleration to be able to apply conservation of energy to the problem.

In a reference frame falling to the earth with velocity v, the stone is initially going up
with velocity v, and so is the earth. The final velocity of the stone is 0 = v, - gt and

that of the earth is v, + }% gt (M is the mass of the carth), from Newion’s third law,

where ¢ = time of fall. From conservation of energy
2

) 1 2 1 m
é—mvo + EMVD + mgh. = E,M VO + HVO)
1 2 m2
Hence 3V (m + WM) = mgh

Negecting % in comparison with 1, we get
v% =2ghor v, =V 2gh

The point is this in earth’s rest frame the effect of earth’s accleration is of order 1% and

can be neglected but in a frame moving with respect to the earth the effect of carth’s
accejeration must be kept because it is of order one (i.c. large).

From conservation of momentum, for the closed system “both colliding particles”
m117;+ m217;= (my +my) v

. ML mY, 27 i~6k) .7
or, s Tt 22=1(3t 21)+2(4) 6k)=;—;2;4ic+
my +m, 3

Hence [v]=V1+4+16 m/s= 46 m/s
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For perfectly inclastic collision, in the CM. frame, final kinetic energy of the colliding
system (both spheres) becomes zero. Hence initial kinetic energy of the system in CM.
frame completely tums into the internal energy (Q) of the formed body. Hence

> 1 2
Q= T;= su|vi-¥]
Now from energy conservation AT w ~Q = -—-é-u IF;-F;IZ,

In Iab frame the same result is obtained as

- 2
m.v, + V.
AT L O Lo ey
2 m+m, 2

1 —y
"'-*z—i-lf;;""z‘

(a) Let the initial and final velocities of m; and m, are 2?; , i, and V', v, respectively.

Then from conservation of momentum along horizontal and vertical directions, we get :

my g = myv,cos 8 (1)
and myy,= myv,sin0 2 T Vi
Squaring (1) and (2) and then adding them, Us
mii = miG+ o) R () o e o, W
Mow, from kinetic energy conservation, \‘&
.
1 2 1 2 1 2 *
FR U sVt MYy 3 v@)\‘
2
2
22 2 moa. 2 .
or, muj-vy)m my;= m, -3 (ui+v)) [Using (3)}
2
m m
of, u"}i 1-—-“% -v:{ 1_+--}‘~
my my
v\ m
ity my + 1y
So, fraction of kinetic energy Iost by the particle 1,
tmd-Lm
2 14 =M% -1 }fx_
1 T2
3m u’ #1
~-m 2m
1= T (Using (4)] ®)

my+my, Mmooy

{b} When the collision occurs head on,
iy = MGV Y, €))

and from conservation of kinetic energy,
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1 1 1
Al
1 1 my iy - vy .
- gmlmf%»fmz[-——-—;,;-m] [Using (5)]
m my
or, Vijld—=tm g |~
my

(6)

or ;;Ig (1 +m1.fm2)

Fraction of kinetic energy, lost
2
Vi (’"1"‘"‘2] - 4 m; my

o ] - } i 6
:;? ny, +m, (m1+m2)2 [Using (6)]

(a) When the particles fly apart in opposite direction with equal velocities (say v), then
from conservatin of momentum,

mou+G= (my-m)v ()
and from conservation of kinetic energy,
or, m = (m, +m)V: @
From Eq. (1) and (2},
e gy u
mou = (m 1
AR O T ®
or, M§ ~3mym,= 0

Hence Ti-;w as m, » 0
m, 3

(b) When they fly apart symmetrically relative to the initial motion dircction with the
angle of divergence 8= 60°,
From conservation of momentum, along horizontal and vertica! direction,

my uy = m, v; cos (6/2) + m, v, cos (8/2) 1
and m, v, 5in (8/2) = m, v, sin (0/2)
or, my vy vy @
Now, from conservation of kinctic energy,
1 1 1
‘2*"'1“3"'0"“2“”'1‘%*5'"2"% &)

From (1) and (2),

myu, = cos (8/2) (ml v+ e ke’ mz]u 2m, v, cos (8/2)
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So, 4y = 2, 008 (6/2) @
From (2), (3), and (4)

2.2
mymy v
4m1cosz(6/2)v§-m1vf+ 2 21 !

m
or, 4c0s’(0/2) = 1+—
my

m
or, —~+ = 4 cos? 9--1
m, 2

m
and putting the value of 0, we get, %1 -2

If (vy,v, ) are the instantancous velocity components of the incident ball and
{vy, sz) are the velocity components of the struck ball at the same moment, then since
there are no external Impuisive forces (i.e. other than the mutual interaction of the balls)
We have #sinoLm Vi 5 Vg™ 0

mucosa=mv; +mv,,

The impulsive force of mutual interaction satisfies
d F d

d[(vk)s mg.— dt(vz’:)

( F is along the x axis as the balls are smooth. Thus ¥ component of momentum is not

transferred.) Since loss of K.E. is stored as deformation energy D, we have

1 2 1 2 1 2
D MU= Smvy" - Smv,
- :,;--mu:2 cosar ~ %mlez-— %mvzf
- “2%;;[ muteos®a, - mzlez ~ { mucoso~ mvy, ) 2 ]
- —2% [ 2mPucosav,, - 2mv,? ] = m (v ucosa - v,,7)

2

u2€0520. - U Cosct -y
4 2

We sec that D is maximum when
U COSQL

e

and D

D
Then 1=

-
max U
L 2
2

On substivting o = 45° > X
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1.I71 From the conscrvation of linear momentum of the sheli just before and after its fragmentation

1.172

Wi+, o)

where 5'1’ s '172' and ¥, are the velocities of its fragments.

From the energy conservation  3my” = 7 +5 +12 )
e . o e e e e
Now V;Or Vigm Ve Vom Ve ¥ 3)

where F; = V'= velocity of the C.M. of the fragments the velocity of the shell. Obviously
in the CM. frame the linear momentum of a system is equal to zero, so0

= oy oy

VI+V2+V3'0 (4)
Using (3) and (4} in (2), we get

' - r - -~ -~ ~ F— -~
I = TE P+ TR P+ T v~ =3+ 20 4202427,

or, W34 25, V,cos0 + 253+ 3 (L -2 =0 %)
If we have had used vy = - v, - vy, then Eq. 5 were contain ¥, instead of ¥, and so on.

The problem being symmetrical we can look for the maximum of any one. Obviously it
will be the same for each.

For V;to be real in Eq. (5)
477 cos’0 = 8(25% + 3 (1 - ) V) or 6(n - 1)V 2 (4 - cos’0)7 3

So, Vs v 9-&31:—% ot Vz{m)-v2(n—1 v

4 - cos

Hence vy (pap = {ﬁ:;]m wy+V2(n-1) v-v(l-a-VZ(nwi) |-1km/s

Thus owing to the symmetry
Vigmax) = V2 (max) ™ Yamax) = ¥ (l +¥Y2(n~1) ) =1 km/s

Since, the collision is head on, the particle 1 wiil continue moving along the same line
as before the collision, but there will be a change in the magnitode of it’s velocity vector.

Let it starts moving with velocity v; and particle 2 with v, afier collision, then from the

conservation of momentum,
M= My, MV, O, U= V,+V, (1

And from the condition, given,
1 2 (—l-mvfd»—l—mv%)

™ 2 _ 1_"?‘*"%
1.2 ut
2
or, Vievim (1-m)u’ 2

From (1) and (2},
vf+(u ..vl)z.. (-

or, v%+u2-2uv1+v§-(1mr;)u7
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of, 2v§—~2v1u+1|u2-0

2 P)

So, vm s Y ENE
= %[H:Vuz-Znuz ]= %u(l:ﬂ/l-h})

Positive sign gives the velocity of the 2nd particle which lies ahead. The negative sign is
correct for v, .

So, v, = %u (1 -v1-21 )= 5m/s will continue maving in the same direction.

Note that v, = 0 if = 0 as it must.
Since, no external impulsive force is effective on the system “M + m”, iis total momentum
along any direction will remain conserved.
So from p, = const.
m u
ruw Mvicos B of, v m ce—n 1
1 > 1 Mcos@ @)

and from p, = const

my,= My sin@ o1, v,= % v,sin@= utan®, [using (1)}
Final kinetic energy of the system
T f =

mv%-i- Mv%

[N ]
et DI e

And initial kinetic energy of the system= -z-mu"'

T, -1,
So, % change = mi-i,wm x 100

i

2 2
lmuZmn29+£M.{”m “ L,

2 2 g 2™
u - M cos’ 8 « 100
2
—mu
12 u
luztan29+-1--"—'uzseczﬁ——u2 -
2 2M
- x 100
L
2

/ .
- (tan29+xn;§~scc29-1) x 100

and putting the values of 0 and i , we get % of change in kinetic energy= - 40 %

(a) Letthe particles m; and m, move with velocities 1?; and igrespectively. On the basis
of solution of problem 1.147 (b)
Py =p | 5-7]
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As ViV,
m, m
So, P=uViZ+v? where p= ——3

my+m,
(b} Again from 1.147 (b)

= Zwd= g0 -7

So, T %u(vf«rvg)
From conservation of momentum
=P +P
i "2 I ' [
s0 (Px"ﬁ;) 'P§”2P1P1 mex*Plz'Pzz

From conservation of energy
2 2 2
peoopn” op
2Zm, 2m; 2m,
Eliminating p," we get
m m
v 2 2 ' 2, 2
0= p (1‘*‘ —n;} = 2p;’ pyeosh, +p; (1" ’-”.1)
This quadratic equation for p;’ has a real solution in terms of p, and cos 8, only if
2

m
4cos’0, = 4[1-— 1

-
m
! k
2
m
or sin® 6, = -—; .o
m.l Ty 0 -
A 7
: my . my
or sin® s+~ or sinfjz--——
my m ;1
This clearly implies {since only + sign makes sense) that !
. "
sin®, ..~ ;: .

From the symmetry of the problem, the velocity of the disc A will be directed either in
the initial direction or opposite to it just after the impact. Let the velocity of the disc A
after the collision be ¥/ and be directed towards right after the collision. It is also clear
from the symmetry of problem that the discs B and C have equal speed (say v''} in the
directions, shown. From the condition of the probiem,
d
'ﬂ — .
cos B = —2%-32150, sin 0= V4 -n? /2 )]
For the three discs, sysiem, from the conservation of linear momentum in the symmetry
direction (towards right)
mve 2mv'sinG+myv or, v=2v'sin0+v )]
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From the definition of the coefficeint of restitution, we have for the discs A and B (or C)

v’ -1 sin 8
vsin @ -0

But e= 1, for perfectly elastic collision,

So, vsin 8= v’ v sin B %) 8 vj/
From (2) and (3), A

o v (1 =2 sin° 0) o s

YT U ezsinlo) %}Q e
- m {using (1)} ‘
6-1 d
Hence we have, C V”
v{n' - 2)

6~n°

Therefore, the disc A will recoil if n <VZ and stop if = V2.

Nuote ;: One can write the eguations of momentum conservation along the direction per-
pendicular to the initial direction of disc A and the consevation of kinetic energy instead
of the equation of restitution.

{a) leta molecule comes with velocity ﬁto strike another stationary molecule and just

after collision their velocities become v™, and v , respectively. As the mass of {he each

molecule is same, conservation of linear momentum and conservation of kinetic energy
for the system {(both molecules) respectively gives :

- —»! —
V= v +V

2 2 12
and vi= VitV

From the property of vector addition it is obvious from the obtained Eqgs. that

! e e
viivzor v,y ,=10

(b} Due to the loss of kinetic energy in inelastic collision vf > v'z + v'i

so, Vv 1 g 2 >0 and therefore angle of divergence < 90°,

Suppose that at time £ the rocket has the mass m and the velocity v, relative to the
reference frame, employed. Now consider the inertial frame moving with the velocity that
the rocket has at the given moment. In this reference frame, the momentum increament
that the rocket & ejected gas system acquires durmg time df is,

dp= mdv+;,tdtu F dt
or, m¥~=qu

or, mw=F -
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1.179 According to the question, F= Oand B = — dm/dt sothe equation for this system becomes,

1.180

1.181

o AV dm —
dt dt

As dvt}ua  so, mdve ~udm.
Integrating within the limits ;

v "
m
-1—de==- éi"—or Yeln 2
u m U m
0 m

my
Thus, v= uln —
m

m
As dv* | & so in vector form Ve - i in —
m

According to the question, F {external force) = 0
So m dv’ . 9m o
’ dt  dr
As T
80, in scalar form, mdv= -udm
wt dm
or, . R
u m

Integrating within the limits for m (1}

wi
u

Hence, m=mye

As F = 0, from the equation of dynamics of a body with variable mass;
.y
AN PR Il o
m
Now dv't Ji’and since &L v, we must have | &0’} = v,d a (because v, is constant)
where d o is the angle by which the spaceship turns in time dt.

dm w dm
So, ~u —m ypda of, dom= —-——
m Vo M
»n
u dm u i
or, omw - § Eln ¥ q] 2
Vo m v, m
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We have %a -0 O, dms= - pdt

m )
Integrating fdm- -p.fdt or, mw= my~ @t
m, 0

As i'= 0 so, from the equation of variable mass system :

dv’ > dv =
(mo-p) = =F or, === W= F/(my - ut)
;- t
or, J‘di‘“‘é F &
(mg - p1)
i
F m
Hence Ve £ In g
B ny — pe

Let the car be moving in a reference frame to which the hopper is fixed and at any instant
of time, let its mass be m and velocity v
Then from the general equation, for variable mass system.

m A Fudn

dt dr

We write the equation, for our system as,

me_r= Fevi—roas, u=-v (1)
So L@ - F
Fr
and ™ ;f on integration.
But mwmg + pt
iy
— Ft
50, P e
myil+ e
My
— e
Thus the sought acceleration, w = %:-’-- .,me.m.i,
m, (1 + -E-f—)
My

Let the length of the chain inside the smooth horizontal tube at an arbitrary instant is x.
From the equation,
“* _udm

e
mws=F+y —
dt
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e - —
as w= 0, F 11w, for the chain inside the tube

hxws= T where A= »'»}'— )
Similarly for the overhanging part, AV r
=0 A
- X~
Thus mw= F v 4
of AMhw=2dhg-T ) h
From (1) and (2), /\hg
AMx+h)yw= Mhg or (x+h)v%§*= hg B
dv
or, x+ My ——= gh,
wely Ti3= 8
[As the length of the chain inside the tube decreases with time, ds= - dx.]
or, vdvy= —-ghx+h
v o
. dx
Integrating, f vdve —gh f Toh
D -k}

v ! \/ 71
of, 3= gh In (ﬁ) or v= \f2gh in ("E)

Force moment relative to point O ;

oo

- dM —
N= y = 2 bt

Let the angle between M and N ' "oC
a=45%att = 15 o P T ; >
LN

—p — ""2 — H

Then 1 M-N (@+big) (2bty) £ ;

VET\MIN Va1 2t Mo

e d '

¥

2 15 bl i

= i

a*+ b t; 2bt, a+ b :; B’tz 7

2 /a .
So, 2 b’ t; - a4 b tg o, = V73 (as ¢, cannot be negative)

It is aiso obvious from the figure that the angle o is equal to 45° at the moment &

when @ = b1 ic. fo = Va7b and N = AVERS

95



96

1.186

1.187

1.188

M@= 5= (quég*ﬁ xm (5 + §1)
)

= mvogtz sin(gw a) (-E’ + imv‘,gt2 sin (It-'«ba)(l?)
2 2
1 2 ™.
= 5y gt cosa(~k }:
2
mv, g1 cos o
Thus M {£) = Dreg’ o2
2 >
Thus angular momentum at maximum height
. ¥t Vpsina
Le.at = o= y
w(Z) w7 % cos Mkg-m¥s
2] \28 e s
Alternate : ! 7X

A?(ﬂ)u 0 so, ﬁ(t)=fﬁdtnf{?§<m§')
0 0

y 2
..f {(ﬁ;:-&%gﬁz)xmﬂd:- (F;xm?)-{z-
0

{a) The disc experitnces gravity, the force of

reaction of the horizontal surface, and the force

E’ of reaction of the wall at the moment of the

impact against it. The first two forces

counter-balance each other, leaving only the

force R, It’s moment relative to any point of A

the line along which the vector }? acts or along

nonmal to the wall is equal to zero and therefore

-

S (N
O
S5

A

the angular momentum of the disc relative to

:c:&"?\>

any of these points does not change in the given
process.

(b} During the course of coltision with wall
the position of disc is same and is equal to
g . = * n

7,y Obviously the increment in linear

momentum of the ball Ap™ ~ 2mv cos o n
. - A . .
Here, AM = r_ . x Ap= 2 mvicos an and directed normally emerging from the plane of
figure
ol
Thus {AM]= 2mvicosc
P
{a) The ball is under the influence of forces T and m g at all the moments of time, while

[

Q:

moving along a herizontal circle. Obviously the vertical component of T batance m gand
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1.190

a7

so the net moment of these two about any point becoems zero. The horizontal component
of E which provides the centripetal acceleration to ball is already directed toward the
centre (C) of the horizontal circle, thus its moment about the point C equals zero at all
the moments of time. Hence the net moment of the force acting on the ball about point
C equals zero and that’s why the angular mommetum of the ball is conserved about the

horizontal circle.

(b) Let o be the angle which the thread forms
with the vertical.

Now from equation of particle dynamics :

Tcosa= mg and Tsina = ma? 1 sin o

Hence on solving cos o = ;% (1)

As 11-\_4', | is constant in magnitade so from figure.
EAH[ = 2 M cos a where

M= | M|~ |M]
= |, xmV|= mvl(as F;.L?)
ThuslAJ_P;{w 2mvicos o= 2mw I’ sinacos o

I.‘/ 2
= 2—:—35— i -(ﬁ;) (using ). )

During the free fall timef= © = V , the reference point O moves in hoizontal direction

(say towards right) by the distance V'l: In the translating frame as M {0} =0, so

AM=Mf=?' ‘ 5(\,)

=-(-V1:?+h?)xm[gt}::Vr] >

b
- —ngtziz—’v&th(-H&c‘j J ( )
25\ > - —
- _mvg(?)k+th(+k) --mVhE
Hence iAﬁ—;iﬁ mVh

The Coriolis force is.(2m v~ ‘x @ ).

Here @ is along the z-axis (vertical). The moving disc is moving with velocity v, which
is constant. The motion is along the x-axis say. Then the Coriolis force is along y-axis
and has the magnitude 2m v, . At time ¢, the distance of the centre of moving disc from

O is vyf (along x-axis). Thus the torque N due to the coriolis force is
Nu 2mvgorvyg along the z-axis.
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1.191

1.192

Hence equating this to %
%‘"f— = 2m vg of ot M= mvﬁ wr? + constant.

The constant is irrelevant and may be put equal to zero if the disc is originally set in
motion from the point O.

This discussion is approximate. The Coriolis force will cause the disc to swerve from
straightline motion and thus cause deviation from the above formula which will be substantial
for large t.

If r = radial velocity of the particle then the total energy of the particle at any instant is

2
%—mi'2+-—g-r-2-+kr2=5 43

where the second term is the kinetic energy of angular motion about the centre O. Then

the extreme values of r are determined by r « 0 and solving the resulting quadratic equation

2
22 g2 M
Kry -Er + 0

rzaE: VEZ-—“%E

2k

we get

From this we sece that

E=Krl+1) (2)
where r, is the minimum distance from O and r, is the maximum distance. Then
i
-2-mv%+2kr§-k(r%+r%)
Hence, me=
¥y

-Note : Eq. (1) can be derived from the standard expression for kinetic energy and angular

momentum in plane poler coordinates :

1 .2 1 9242
T Fmr +-2-mr29

M = angular momentum = mr* ©

The swinging sphere experiences two forces : The gravitational force and the tension of
the thread. Now, it is clear from the condition, given in the problem, that the moment of
these forces about the vertical axis, passing through the point of suspension N, = 0. Con-

sequently, the angular momentum M, of the sphere relative to the given axis (2) is constant.
Thus mvy (Isin8) = mv 1)

where m is the mass of the sphere and v is it s velocity in the position, when the thread
n

2 with the vertical. Mechanical energy is also conserved, as the sphere is

forms an angle
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1.194

1.195

29

under the influence if only one other force, i.e. tension, which does not perform any work,
as it is always perpendicular to the velocity.

So, %—mvg +mgicos 0= %—mvz {2)
From (1) and (2), we get,
vo= V2gl/cos §

Forces, acting on the mass m are shown in the figure. As N= mg, the net torque of these
two forces about any fixed point must be equal to zero, Tension T, acting on the mass m
is a central force, which is always directed towards the centre 0. Hence the moment of
force T is also zero about the point O and thercfore the angular momentum of the particle
m is conserved about O.

Let, the angular velocity of the particle be w, when the separation between hole and
particle m is r, then from the conservation of momentum about the point O, :
m(wyrg) rg= m(wr)r,
Wy fg
)

Now, from the second law of motion for m,

or w=

T=F=ma’r
Hence the sought tension;

2.4 24
_mwgrgr  mwyrg
3 3

On the given system the weight of the body m is the only force whose moment is effective
about the axis of pulley. Let us take the sense of @ of the pulley at an arbitrary instant
as the positive sense of axis of rotation (z-axis)

As M,(0)= 0, so, AM,= M, (0= [ N,ar

[

So, M= f mgR dt = mg Rt
1]

Let the point of contact of sphere at initial
moment {f= 0) be at O. At an arbitrary
moment, the forces acting on the sphere are
shown in the figure. We have normal reaction
N, = mg sin o and both pass through same line
and the force of static friction passes through
the point O, thus the moment about point O
becomes zero, Hence mg sin ¢ is the only force
which has effective torque about point 0, and
is given by [N |= mgRsino normally
emerging from the plane of figure.

As M{t= 0)= 0, so, AM = Ki(z)=f5f’dz

Hence, M) = Nt= mgR sin o
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1.196

1.197

1.198

Let position vectors of the particles of the system be F: and ?T " with respect to the points

O and O' respectively. Then we have,

— —t i
Fi=T1, +7, 1)
where 7, is the radius vector of O’ with respect to O.

Now, the angular momentum of the system relative to the point O can be written as follows;
M 2(;;&5;)- 2(&"@;%2 (?;x;;;’) [using (1)]

o, M= A—;, +(F;xﬁ), where, p’= 2 I7e (2)

From (2), if the total lincar momentum of the system, p= 0, then its angular momen-
tum does not depend on the choice of the point O.

Note that in the C.M. frame, the system of particles, as a whole is at rest.

On the basis of solution of problem 1.196, we have concluded that; “in the C.M. frame,
the angular momentum of system of particles is independent of the choice of the point,
relative to which it is determined” and in accordance with the problem, this is denoted

by M.

We denote the angular momentum of the system of particles, relative to the point O, by
M. Since the internal and proper angular momentum B2, in the C.M. frame, does not depend
on the choice of the point O, this point may be taken coincident with the point O of the

K-frame, at & given moment of time. Then at that moment, the radius vectors of all the

particles, in both reference frames, are equal (F:" = F;) and the velocities are related by

the equation, -

V= Vi, &)
where 17: is the velocity of C.M. frame, relative to the K-frame. Consequently, we may
write,

s — —yt —

M= 2 m; (r,-xi?)- 2 m‘-(ri xmxfz mi(rixvc)

- g
or, M= ﬁ+m(rcx§':), asEmi}?=mF:, where m=zmi.
or, ﬁ=ﬂ+(ﬁxm‘7:)=ﬁ+(?:x§')

From conservation of linear momentum along the direction of incident ball for the system
consists with colliding ball and phhere

mvy= mv + %— v, 43

wherev' and v, are the velocities of ball and sphere 1 respectively after collision. (Remember

that the collision is head on).

As the collision is perfectly elastic, from the definition of co-efficeint of restitution,

Yoy
1

1=

T, or, V= v= -y 2
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Solving (1) and (2}, we get,

V= %vq’ directed towards right. @vg-y--m{)“ m/z

In the C.M. frame of spheres 1 and 2 (Fig.)

-, ~ - fo Y e e
1;; = "f’; and |pil=|p,| = ulv,~¥,]

Also, Fip = ~ 7o, thus M = 2[Floxp;] c
- 1 m/2 4% A T
Asry. L py, so,ﬁ=2{2 Z T3 n] 1/2
{where 7 is the unit vector in the sense of Tie X ;; 3 ?H/2C)
~ mvyl
Hence M =

In the C.M. frame of the system (both the discs + spring), the linear momentum of the
discs are related by the relation, ;1' - - f;; at all the moments of time,

where, D= Py=P= v,

And the total kinetic encrgy of the system,

T= 2, [See solution of 1147 ()]

Bearing in mind that at the moment of maximum deformation of the spring, the projection
of 17;, along the length of the spring becomes zero, ie. v = C.

The conservation of mechanical energy of the considered system in the C.M. frame gives.

“i‘("z&)"g" ';"‘"2*'12'("3‘) Vo) o

Now from the conservation of angular momentum of the system about the CM.,

1 -19* Zy uZWIO‘H[' Zy
2i2j12°° 2 |27
v, |, -1

0% X X
or, Veet () ™ W - "’0(1*’};) ~ vc(l-};), as x <<l )]

Using (2) in (1), %mvé[z“(luxlg)? }, K2

2
L z )|
or, Fmvp 1—(1«~IG+102] = kX
mvix
or, IO ~ k x°, [neglecting ¥/ I7]
0
2
MVO
As xw 0, thus x= ——
Kl
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1.4 UNIVERSAL GRAVITATION

1.200 We have

r ? v
3
Thus o= e Y v

(Here m_ is the mass of the Sun.)

2nym,  Inx667x10" " x197x10%
So T= 3= 33
v (34-9 x 10°)

(The answer is incorrectly written in terms of the planetary mass M)

= 194 x 10" sec = 225 days.

1.201 For any planet

Mm
MR = L1508 o 0w Y%
R?
So, Te 2™ L 2nr¥2 Vi,
)
372
I; (&
{a} Thus 'T:H (ﬁ;)
Rf 2/3 2/3
So ﬁ;" (T;/ T Y = (12" = 5- 24.
23
2 YW Vym
) V; ral and R, (Tm“‘“?.n )
23 23 v3
. (m 72 ®) 2aym,
So VJ - mﬂ“}w"ﬂm or, VJ e T
where T= 12 years. m,~ mass of ths Sun.
Putting the values we get V, =« 12:97 km/3
23

Acceleration = ri- m X Zn
‘RI T T‘V-Ym,
2 4/3
= (-j’i) (ym, )

= 215 x 107 km/s*
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Semi-major axis= {r + R}/2
It is sufficient to consider the motion be along a circle of semi-major axis L ;R for T
does not depend on eccentricity.
32
r+R
Hence T= - aV(@+R*/2ym,

vym

5

(again m_ is the mass of the Sun)

We can think of the body as moving in a very elongated orbit of maximum distance R
and minimum distance 0 so semi major axis = R/2. Hence if © is the time of fall then

2 3
2t - R/2 2 . 72
(MT ) (mR ) or 1= T/32

or t=T/4/2 = 365/ 42 = 645 days.

T=21R*/Vym,

If the distances are scaled down, R*? decreases by a factor 1™ %and so does m, . Hence
T docs not change.

m,m
The double star can be replaced by a single star of mass P ; moving about the centre
1h Py
of mass subjected to the force ym, m,/ r*. Then
2P _2=xr 32
v my,m, M
ymm m +m,
So P2 e LV
" ‘é/
or, r=|>= MY YM(T/2 n)p
(a) The gravitational potential due to m1 at the point of location of m, ;
m m
f G -dr= f Y L= e
r
m;m
So, Upy = my Vym = L0122
Similarly Up= - YT ™

r
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1.207

Hence mr T

ymom, o - | >
Ug= Uy = U= -— T« _____’“:_ x
dx

(b} Choose the location of the point mass as the origin, Thea the potential edfergy di/ of

an eiement of mass dM -e%l-dx of the rod in the field of the point mass is
dU = - ym M L
1 x

where x is the distance between the element and the point. (Note that the rod and the
point mass arc on a straight line.) If then a is the distance of the nearer end of the rod
from the point mass.

< { >
i 5-? —————————— el s
-"%k x >M x
dx
a+l

U*—Y*T- T

mM{ dx M 4
a X !

The force of interaction is

aly
F'-aa
mM 1 1 ymM
=TT ‘az) " aa+ D
1+:

Minus sign means attraction.

As the planet is under central force (gravitational interaction), its angular momentum is
conserved about the Sun (which is situated at one of the focii of the ellipse)
2 %73
So, mviry« mv,r, of, vi= - (1
1
From the conservation of mechanical energy of the system (Sup + planet),
ymm 1 Ymom 1,
- t=MV|= ————=mV,
ry 2 ry 2
2
? ms 1 r2 b m.: 1 .
e a5 - ()0 wins )
Thus, v Y2ym r [ ry(r; +1)) )

Hence M= mv,ry= m\/27m,r1r2/(r1+r2)
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From the previous problem, if r, , r, ate the maximum and minimum distances from the
sun to the planet and v, , v, aze the corresponding velocities, then, say,

mm,
E-émvz-? 3
2 r

‘Y, .E ‘mm, Ymm, b

mm" .
SrAr, 1, rtr, 24 [Using Eq. (2) of 1.207]

where 24 = major axis = r; + r,. The same result can also be obtained direclly by writing
an equation analegous to Eq (1) of problem 1.191.
2 ymm
Eaimi? 2 T
2 m r

(Here M is angular momentum of the planct and m is its mass). For extreme position

r=0 and we get the quadratic
2

Er2+7mm_‘.r-%a0

The sum of the two roots of this equation are
ymm,

Pyt ry=— E =2q
Thus E mu constant
2a

From the conservtion of angular momentum about the Sun.
mvyrysinc= mvyr;= mvyry, of, vir = v,Ir,= v;r,sina {1)
From conservation of mechanical energy,
1 ymm 1 ym,m
=m vg - ] - m Vi - 5
2 rn 2 ry
¥

m vﬁr%sinza ym, 1
- - - —— (\JS1
S (Using 1)

2ym
or, ("u"‘ ; > r§+27msr1-v§r§sina-0

o,

) 2.2 .02 ‘ﬂ_m{

"2?”1&.1 4? m,+4(vu asln a) Q "n
2ym
2357

V1um(~2~—--ﬁ) ro{le1—~(2—n)nsin2a}
i=x

T rm,

(_g,_ Va) 2-w)

where 1= 7,/ ym, (m, is the mass of the Sun).
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1.210 At the minimum separation with the Sun, the cosmic body’s velocity is perpendicular to

1.211

its position vector relative to the Sun. If r_;, be the sought minimum distance, from con-
scrvation of angular momentum about the Sun (C).

Vol

mvylm myr,

win O, V=

@

mix
From conservation of mechanical energy of the system (sun + cosmic body),
1 2, _ Ymm 1 2

i—mve b — +-2-mv
2 S ,2
V m vV,
So, Yo 1%, {; (using 1)
2 Tmin 255
or, vari v2ymorl, ~vil®=0
~2ym, x\/47 m +4w{J Vo i1 —ymsxV im2ev)i?
So, Fnin ™ 5
2V0 VO

Hence, taking positive root

= (rm, v8) [VI+ (1537ym, P - 1]

Suppose that the sphere has a radius equal to 4. We may imagine that the sphere is made
up of concentric thin sphericai shells (layers) with radii ranging from 0 to @, and each
spherical layer is made up of elementry bands (rings). Let us first calculate potential due
to an ¢lementry band of a spherjcal layer at the point of location of the point mass m (say
point P) (Fig.). As all the points of the band are located at the distance I from the point
P, so,

dpm _}_%ﬂ (where mass of the band) {1
aMw( 4 )(Z:zasme)(adﬁ)
(-—zﬁ)smﬂdﬂ @

And %= a*+r®-2arcos0 3)
Differentiating Eq. (3), we get
Il = arsin0 d@ 4

Hence using above equations

dp= »(LZ%M;«}& ©)
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Now integrating this Eq. over the whole spherical layer

d9-fov- 120 [

So dgn -1 ©)

Equation (6) demonstrates that the potential produced by a thin uniform spherical layer
outside the layer is such as if the whole mass of the layer were concentrated at it's centre;

Hence the potential due to the sphere at point P
M
(pufdfp- —%fdM“—I;—‘ (7)
This expression is similar to that of Eq, (6)

Hence thte sought potential energy of gravitational intersction of the particle m and the
sphere,

U mp= —lﬂ%’—n-
() Using the Eq., G,~ -%—?
6= -3  (wingEq.7)
So G= —IA—;!-?'and Fu m&'--»l”%‘u? {8

r r
(The problem has already a clear hint in the answer sheet of the problem book). Here we
adopt a different method.

1ct m be the mass of the spherical layer, wich
is imagined to be made up of rings. At a point
inside the spherical layer at distance r from
the centre, the gravitational potential due to a
ring element of radius g equals,

dp= - -g’;”; dl (see Eq. (5) of solution of 1.211)

Hence G, m -9"?—- 0.
ar

Hence gravitational field strength as well as ficld force becomes zero, inside a thin sphereical
layer.

One can imagine that the uniform hemisphere is made up of thin hemispherical layers of
radii ranging from O to R. Let us consider such a layer (Fig.). Potential at point O, due
o this layer is,
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1.214

2
do= _ydm -gj—ﬁirdr, where dm = M 3 dnr dr
r R {2/3)nR 2

(This is because all points of each hemispherical shell are equidistant from O.)

R

M M

s, o e -2 oo
0

M

Hence, the work done by the gravitational field dr

force on the particle of mass m, to remove it

to infinity is given by the formula m 0 / r .
A= my, since ¢ = 0 at infinity, )

Hence the sought work,

L 4

IymM
2R

(The work done by the external agent is - A.)

In the solution of problem 1.211, we have obtained ¢ and G due to a uniform shpere, at
a distance r from it’s centre outside it. We have from Eqgs. (7) and (8) of 1.211,

pm uy—;M*and 8=-x§{? A

AO-—»w- -

Accordance with the Eq. (1) of the solution of 1.212, potential due to a spherical shel of
radius a, at any point, inside it becomes

o= o Const and 6, - 22 0 ®)

For a point {(say P) which lies inside the uniform solid sphere, the potential @ at that point
may be represented as a sum.
Prsie ~ P11 P2

where @, is the potential of a solid sphere having radius r and @, is the potential of the
layer of radii r and R. In accordance with equation (A)

M 4 M

@, = -1 ngmnrs = -—y--g-r-2
ri(4/3)=R’3 R

The potential ¢, produced by the layer (thick shell} is the same at all points inside it. The
potential @, is easiest to calculate, for the point positioned at the layer’s centre. Using

Eq. (B)

where d M = ——A{-;4nr2dr== M P dr
4/3)nR
is the mass of a thin layer betveen the radii » and 7+ dr.
2

M r
Thus ¢ =Pt (‘;—R)(s-—;,] (©)
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From the Eq. G, = :?:?‘E
yMr
G =
r RS
O Mo 4 o
or G FE r ysatpr
{where p = ) , is the density of the sphere) £
EERS

The plots ¢ (r) and G (r) for a uniform sphere of radius R are shown in figure of answersheet.
Alternate : Like Gauss’s theorem of electrostatics, one can derive Gauss’s theorem for

— i b
gravitation in the formf G-dS= ~4xym,, .. . For calculation of G at a point

inside the sphere at a distance r from its centre, let us consider a Gaussian surface of
radius r, Then,

G,dnr= -4ny -‘-‘;Ag;;)r3 or, G, = _,Y_M_,.

R3
g M — 4 M
Hence, G= -1 7% ySap7las pe ———
e IR "*( e (4/3)3:123)
So, @wa,dr=f»I~grdr+f-l%{dr
R r
14 r R
Integrating and summing up, we get,
2
7.4 PN A

And from Gauss’s theorem for outside it :
G,4xr’= —4ayM or G, = _I..g
r

@

Thus qJ(r)-fG,drse —-1?

r
Treating the cavity as negative mass of density — p in a uniform sphere density + p and
using the superposition principle, the sought field strength is :

i el e

G= G +G,
or G= -g-mp?: + -‘-;-wt(-p) r

(where 7, and 7. are the position vectors of
an orbitrary point P inside the cavity with
respect to centre of sphere and cavity
respectively.)

iy

Thus G= —%nyp(?’—?f)m mg—zypl

+
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1.216

1.217

We partition the solid sphere into thin spherical layers and consider a layer of thickness
dr lying at a distance r from the centre of the ball. Bach spherical layer presses on the
layers within it. The considered layer is attracted to the part of the sphere lying within it
(the outer part does not act on the layer). Hence for the considered layer

dpanrie dF

Ar? 2
L V3T P @artdrp)
of, dPAdnr’= 1

(where p is the mean density of sphere)
or, dp= g'atypzrdr
R

2x
Thus P‘fdp-*g"“rpz(ﬂz-rz)
r

(The pressure.must vanish at r = R.)

o, pm -3—(1 —('r’/R’))yMzi::R‘, Putting p = M/(4/3) n R

Putting r = 0, we have the pressure at sphere’s centre, and treating it as the Earth where
mean density is equal to p = 55 x 10° kg/m> and R= 64 x 10°km
we have, p=173x10"Pa or 172 x 10° atms.

{a) Since the potential at each point of a spherical surface {shell) is constant and is equal
LR IE@-, [as we have in Eq. (1) of solution of problem 1.212])
We obtain in accordance with the equation
1 1
U 'é"“ f dmop= 'é' (pf dm
2

- 1{ ym m= - L
R 2R
e factor 1 is needed otherwise contribution of different mass elements is counted twice.
2
{b) In this case the potential inside the sphere depends only on 7 (see Eq. (C) of the
solution of problem 1.214)

2
W _Sym(, r
= "2R (1 3R2)

Here dm is the mass of an elementry spherical layer confined between the radii
rand r+dr:

dm= (4ur2drp)- (—%?-)rzdr
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1
U-2 dmyp
R
_if(3m\ 2, [ 3ymf, 2
() {le))

1218 Letw =Y Z—-.a.ﬁ = circular frequency of the satellite in the outer orbit,
r

wy= Y . L S circular frequency of the satellite in the inner orbit

(r-Ar

So, relative angular velocity = wy+ © where ~ sign is to be taken when the satellites are
moving in the same sense and + sign if they are moving in opposite sense.
Hence, time between closest approaches

_2n 2n 1 { 45 days (0 = 0)
T o x 3AF 1 080 hour (d = 2)
R Y e T

where 6 is 0 in the first case and 2 in the second case.

YM 667 x 1071 x 596 x 10%

0, = = = 98 m/s®
1219 ®1= 77 637 x 1097
25y 2x22 Y
2 Z%Y po X 6 . 2
mzst (T)R (24x3600x7)637xm 0034 m/s

YMs  667x107" x1.97x 10%

- - 5 9%x107 m/s?
RZ.. (14950 x 10° x 10%*

and  wy
Then o : @y 0y = 1:0-0034: 0-0006
1.220 Let h be the sought height in the first case. so

2D oM
100° (R + k)
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1222

1.223

2

or 2 = {1+ h ”
100 R
From the statement of the problem, it is obvious that in this case k<< R
99 2h R 6400
Thus IOOF(I_R) or h= 200'(200)km' 32 km

In the other case if A’ be the sought height, than
-2 -2
g. & N
5 g(i+R) or 5 (1+R
From the language of the problem, in this case A’ is not very small in comparision with R.

Therefore in this case we cannot use the approximation adopted in the previous case.
2

Here, (1-1»%) - 2 So,%utv’f—-l
As - ve sign is mot acceptable

A= (V2 -1)R= (¥2 -1)6400 km = 2650 km
Let the mass of the body be m and let it go upto a height A,
From conservation of mechanical energy of the system

X——A;mi»%m 2= —Yam Mm+0

Using %= £, in above equation and on solving we get,

RY
233”‘!0

Gravitational pull provides the required centripetal acceleration to the satelite. Thus if A

be the sought distance, we have
2

h

myv ymM )
50, - of, (R+hyvi=yM
RAE) - mepy o0 ErRV=Y
or, RV +hvi=gR?, as g= %
2 2
Hence h-%&-R[%nl]

A satellite that hovers above the earth’s equator and corotates with it moving from the
west to east with the diurnal angular velocity of the earth appears stationary to an observer
on the earth. It is called geostationary. For this calculation we may neglect the annual
motion of the earth as well as all other influences. Then, by Newton’s law,
2
wen(F)
P T
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where M = mass of the earth, 7 = 86400 seconds = period of daily rotation of the carth
and r = distance of the satellite from the centre of the carth. Then

2
r=.43 T
()
Substitution of M = 596 x 10%* kg gives

re 4220 x 10* km
The instantancous velocity with respect to an inertial frame fixed to the centre of the earth
at that moment will be

g%t* r= 3907 km/s

and the acceleration will be the centripetal acceleration.
2

( i ) r= 0223 m/s?
T
We know from the previous problem that a satellite moving west to cast at a distance

R = 2:00 x 10* km from the centre of the earth will be fevolving round the earth with an
angular velocity faster than the earth’s diurnal angualr velocity. Let

o = angular velocity of the satellite
Wy = % = anuglar velocity of the earth. Then
W~ W= -
¢y
as the relative angular velocity with respect to earth. Now by Newton’s law

So, M= “+M)

Substitution gives
M= 627x10% kg

The velocity of the satellite in the inertial space fixed frame is \/ I—;:—l cast to west. With

respect to the Earth fixed frame, from the 17; S W x 17 the velocity is

23R
v T + R = 703 km/s

Here M is the mass of the earth and T is its period of rotation about its own axis.
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It would be - %"R;-b V x}'(& ; if the satellite were moving from west to east.
To find the acceleration we note the formula
mw = ?+2m(§"x§)+mm21?

Here F - . I—&s—l—i’ and v~ L@and v x @ is directed towards the centre of the Earth.

2
M 2R Mi2x (2=n

Thus = ’F”f"&“ Vi )“f“'(“‘f“) R
toward the earth’s rotation axis
2R 1 / yM

T *2V R
From the well known relationship between the velocities of & particle w.rt a space fixed
frame (K) rotating frame (K') v v" + (Wx7)

) 2n
Vi=y-— ( T) R
Thus kinetic energy of the satellite in the earth’s frame

2
T].'- lmv’gu lm(ywm)

yM  2x

" -Eﬁ- + F = 494 m/s? on substitution.

2 2 T

Obviously when the satellite moves in opposite sense comared to the rotation of the Earth
its velocity reldtive to the same frame would be

v, = v+(2Tn)R

And kinetic energy

2
, 1 2 i 2nxR
From (1) and (2)
v+2::R 2
ma-r 3
T'=

ZnR)

Vo7

Now from Newton’s second law

1—%‘—23- r ve VI = ER @

Using (4) and (3)

)

7™ ———————= 127 nearly (Using Appendices)
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1227 For a satclite in & circular orbit sbout any massive body, the foliowing reiation holds

1.228

between kinetic, potential & total energy :
I'm—-E U=2E (1)

Thus since toial mechanical energy must decrease due to resistance of the cosmic dust,

the kintetic energy will increase and the sateflite will ‘fall’, We see then, by work energy
theorm

dT-:_dEu._dAﬁ_
So, mvdy = ov'vdt  or, odt  dv
moy?

Now from Netow's law at an arbitray radius r from the moon’s centre.

VoYM M
“;**—ri- or v= .

{M is the mass of the moon.} Then

Y TR 7
nR R

where R= moon’s radius. So

vy T
e
v 0
or, T g—(i _;}.‘_},Wﬂ“{ﬁ_n_
f GJ;%' u'\/—_

where g is moon's gravity. The averaging implied by Eq. (1) (for noncircular orbits) makes
the result approximate.

From Newton’s second law

%- _"ﬂo_ or vym V = 167 km/s 1)

From conservation of mechanical energy

i 2 yMm 2yM 2
smvs - o= 0 o, v, = vV == = 237 kmos 3]
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1.229

1.230

1.231

1232

In Eq. (1) and (2), M and R are the mass of the moon and its radius. In Eq. (1) if M and
R represent the mass of the carth and its radius, then, using appendices, we can easily get

vp= 79 km/s and v = 11-2 km/s.

In a parabolic orbit, E = 0
1 2 YMm - V3 [M
So 5 mv =y 0 or, v;= V2 7

where M « mass of the Moon, R = its radius. (This is just the escape velocity.)
On the other hand in orbit

mvf2R= Mf}' or V= V W
R

R

Thus Av=(1-\/2‘)\/3%{4 = - 070 km/s.

From 1.228 for the Earth surface

vow\/?and v, = ‘\/ —2}};‘%

Thus the sought additional velocity

M=y, =vy=\ IRE (V3-1)=gR(¥VZ-1)

This ‘kick’ in velocity must be given along the direction of motion of the satellite in its
orbit.

Let r be the sought distance, then

. M
Z—%u {T or 'r]rz- (ner)z

or Vinre (nR-r) or r-%- 3-8 x 10 km.

Between the earth and the moon, the potential energy of the spaceship will have a maximum
at the point where the attractions of the earth and the moon balance each other. This
maximum PE. is approximately zero. We can also neglect the contribution of either body
to the p.E. of the spaceship sufficiently near the other body. Then the minimum energy
that must be imparted 1o the spaceship to cross the maximum of the PE. is clearly (using
E to denote the earth)
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YMpm
RE

With this energy the spaceship will cross over the hump in the PE. and coast down the
kill of p.E. towards the moon and crashiand on it. What the problem seeks is the minimum
energy reguired for softlanding. That reguies the vse of rockets to loving about the braking
of the spaceship and since the kinetic energy of the gases ejected from the rocket will
always be positive, the total energy required for sofflanding is greater than that required
for crashianding. To calculate this energy we assume that the rockets are used fairly ciose

to the moon when the spaceship has nealy attained its terminal velocity on the moon

4 / M,
L 2 where M, is the mass of the moon and R, is its radius. In general
0

dE = vdp and since the speed of the ejected gases is not less than the speed of the rocket,
and momentum transfered to the ejecied gases must equal the momentum of the spaceship
the energy E of the gass ejected is not less than the kinetic energy of spaceship

YMygn
R()

Addding the two we get the minimum work done on the ejected gases to bring about
the softlanding.

M, M,
RE RO

A, =™ m (-———— + =
On substitution we get 13 = 10° kI.

Assume first that the attraction of the earth can be neglected. Then the minimum velocity,
that must be imparted to the body to escape from the Sun’s pull, is, as in 1-230, equal to

(VZ 1),

where vlz = Yy M_/7,r = radius of the earth’s orbit, M, = mass of the Sun,

In the actual case near the earth, the pull of the Sun is smail and does not change much
over distances, which are several times the radius of the Earth. The velocity v; in question
is that which overcomes the earth’s pull with sufficient velocity to escape the Sun’s pull,
Thus

1, Mg 2.2
-2-mv3 -'-”R*- —z—m(vrf 1) 41

where R = radius of the earth, M, = mass of the earth,

Writing vzz = vyM, /R, we get

vy= V224 (VZ -1y} = 166 km/s
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1.5 DYNAMICS OF A SOLID BODY

124

1.238

1.236

1.237

Since, motion of the rod is purely translational, net torque about the C.M. of the rod
should be equal to zero.

! ! £y a
Thus Flztfz(z—a)or, FZ‘I—I/Z 1
For the translational motion of rod.
F,~F P P 2
g i'y= mw, of "F;" F2 (}
From (1) and (2)
a mw, 2
2= F, %, il
P b P i e
Sought moment N=» rx Fw= (ai+bj ) x{Ai +Bj)
= aBE+Ab(-E)= (aB-Ab)K"
N aB-Ab
and arm of the force T e
F VA'+ B
Relative to point O, the net moment of foree :
P — ey - —_— e
N= i xF +r,xF,= (aixAj}+(BjxBi)
il . g
=abk+AB(~k)= (ab-AB}k 4}
Resultant of the external force
Fe P Fom 4280 @
AsN-F= 0 {as F.LI?) so the sought arm [ of the force F
lw N/F = ab-AB

For coplanar forces, about any point in the same plane, 2 rxFimr x?m

— — g o
(where F, = 2 F,; = resultant force) or, N = rx F,_,

N,
Thus lengih of the arm, [w» ——
£

Here obviously l_[".,_, | = 2F and it is directed toward right along AC. Teke the origin at C, Then
about C,

Ne{VZaF+ %F ~ V2 a F | directed normally into the plane of figure.
(Here a = side of the square.)

Thus JV - F% directed into the plane of the figure.

F(an?) a 4 45t

Hence I= R
Thus the point of application of force is at the mid point of the side BC.
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{a) Consider a strip of length dr at a perpendicular distance x from the axis about which
we have to find the moment of inertia of the rod. The elemental mass of the rod equals

drmt 1;’— dx
Moment of inertia of this clement about the axis
dl = dmx’= -’-?-dx-xz

Thus, moment of inertia of the rod, as a whole
about the givcn axis

I..f are L

(b) Let us imagine the planc of plate as xy
plane taking the origin at the intersection point

of the sides of the plate (Fig.). 0 Vi |
Obviously L= [ dmy® X
a
m 2
- f ( ab by )y
B
_ma’
3
2
Similarly Iy - ﬂ’-é-b-w

Hence from perpendicular axis theorem
my 2,52

I = Ix+Iy=- 3 (a +b ),
which is the sought moment of inertia.
(a) Consider an elementry disc of thickness dr. Moment of inertia of this clement about
the z ~axis, passing through its C.M.

L__)___dm R pSdx %.2. c e ey

where p = dcnsny of the material of the plate
and 5 = area of cross section of the plate,

Thus the sought moment of inertia b
&

Sy

2
&&fdx- 2 psb

2pr (asS-nRz) xv
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putting all the vallues we get, [, = 2- gm-m 2 3

(b} Consider an element disc of radius r and
thickniess dx at a distance x from the point
O. Then r = x tana and volume of the disc

= mxltan? o dx R
Hence, its mass dm = nxztana_dx-p (where 1\
, 1 2 l
= d = S
p= density of the cone= m/ZxR" k) b dx
Moment of inertia of this element, about the A
axis OA,
2
r
df = dm 5

xztanza 0

= {nx?tan’adx) 5

= 1t;A;‘gx“tan'*ozd:t
]

de

Thus the sought moment of inertia f = _35_2[3_ tan* f x* dx

0
4,5
10k h ’
N
L 3mR (. 3m
Hence Jw 10 (puttmg P R h)

1,240 (a) Let us consider a lamina of an arbitrary shape and indicate by 1,2 and 3, three axes
coinciding with x, y and z ~ axes and the plane of lamina as x - y plane.

Now, moment of inertia of a point mass about
x - axis, df = dmy2 5( A3 €Y
Thus moment of inertia of the lamina about
this axis, [, = f dmy?

: ()
Similarly, I, = f dmx? I
and Iszdmr2 x
0 7/ (GY) >
=fdzn(x2+y2)as r=vViliy? x (1)
Thus, L=1I+1 o, Lwi+],

(b) Let us take the plane of the disc as x - y plane and origin to the centre of the disc
(Fig.) From the symmetry [, = I. Let us consider a ring element of radius r and thickness

dr, then the moment of inertia of the ring element about the y - axis.
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2 m 2
dl,= dmr -W(andr)r »11. ,
Thus the moment of inertia of the disc about
2z - axis
R
2
I = —2—"21 ridr= mR~
R 2
] e} >
But we have L=L+] =2
dx
I, mR*
Thus I = 5= 4

For simplicity let us use 2 mathematical trick. We consider the portion of the given disc
as the superposition of two. complete discs (without holes), one of positive density and
radius R and other of negative density but of same magnitude and radius R/2,

As (area) o (mass), the respective masses of the considered dises are
{4m/3) and (~m/3) respectively, and these masses can be imagined to be situated at
their respective centers (C.M). Let us take point O as origin and point x — axis towards
right. Obviously the C.M. of the shaded position of given shape lies on the x - axis. Hence
the CM. (C) of the shaded portion is given by

(-m/3)(-R/2)+(4m/3)0 p

Yo ™ (=mi3)+am/3 %

Thus C.M. of the shape is at a distance R/6
from point O toward x — axis

Using parallel axis theorem and bearing in mind
that the moment of inertia of a complete
homogeneous disc of radius m, and radius r;

1 N
equals 5 My ro. The moment of inetia of the

small disc of mass {(—m/3) and radins R/2
about the axis passing through point € and
perpendicular to the plane of the disc

L if_m £2+ PR R
S BN E ) 311276
mR? 4 .
=55 =37 ™R
b
Similarly I %(%’f)ﬂh(%’f'—)(%)
2 .2 mR?
=3mR

Thus the sought moment of inertia,

Ie= he b= 33mR? -2
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1.242 Moment of inertia of the shaded portion, about the axis passing through it’s certre,
2(4 3 Vo2 2{4 3 )3
I= ~5~(3nR p)R —5(3:\7 p)r
24 5_.5
=53 (R-r)

Now, if R = r + dr, the shaded portion becomes
a shell, which is the required shape to calculate

the moment of inertia.

Now,

b

I= —g'--g-np{(r+dr)s——rs}

= %—-g-up(r5+5r4dr+ m)‘s)

Neglecting higher terms.

= %—(4nr2drp)r2- %rm'z

1.243 (a) Net force which is effective on the system (cylinder M +body m } is the weight of
the body m in a uniform gravitational field, which is a constant, Thus the initial acceleration

of the body m is also constant.

From the conservation of mechanical energy of the said system in the uniform field of

gravity at time t= At :AT+AU= 0

or ?la—mvzwr-;--@%f—mz-mgf&ka 0
or, —3(2m+M)v2»mgM-0{as v= wR at all times ]
But via= 2wAh
Hence using‘ it in Eq. (1}, we get
%(2m+M)2wAh-mgAh- 0orw= (231":—1%)

. . . . w 2m
From the kinematical relationship, f = R (3mt MR
Thus the sought angular velocity of the cylinder

2mg gt
wlt) = Brm MR ™ (TeM/2m) R

(b) Sought kinetic energy.

z
T(t)= %«mvz-ké«%{mwzs %»(%+M)R2w2
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1.244 For equilibrium of the disc and axie

1.245

1.246

2T = mg or T= mg/2
As the disc unwinds, it has an angular acceleration B given by

IB=2Tr or B 3§~’-~ mgr

I
The corresponding linear acceleration is ; v
)
!’ﬁ= W ——g-——mIr AT /‘T
Since the disc remains stationary under the ¢(H _D

combined action of this acceleration and the
acceleration {(~w) of the bar which is
transmitted to the axle, we must have mg
mer..
I
Let the rod be deviated through an angle ¢'from its initial position at an arbitrary instant
of time, measured relative to the initial position in the positive direction. From the equation
of the increment of the mechanical energy of the system.

W o=

AT= A,
o, SHo’= [N,dp
L
2
or, %%—m2=ff'lcoscpdq} = Fising
Thus, o=/ Ssing

Ml

First of all, let us sketch free body diagram of each body. Since the cylinder is rotating
and massive, the tension will be different in both the sections of threads. From Newton’s
law in projection form for the bodies m, and m, and noting that w, = w, = w= BR, (as

no thread slipping), we have (m, > m,) ,

myg~Ty= mw=m fR ?

ot Ty o o )

Now from the equation of rotational dynamics

of a solid about stationary axis of rotation. i.e. T Y )

N, = I8, for the cylinder.

of, (T,-T,)R=1I§ = mR*p/2 (2)

Similtaneous sofution of the above equations yields : [ W 2 WT
(m,-my)g T, my(m+dm) 4

= and =
p R(m1+m2+%} T, my(m+4m;) mg. Ymag
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1.247

1.248

As the systemi (m +m; +m,) is under constant forces, the acceleration of body m, an
m, is constant. In addition to it the velocities and accelerations of bodies m; and m, a1
equal in magnitude (say v and w) because the length of the thread is constant.

From the equation of increament of mechanical energy i.e. AT + AU = A, at time ¢ whe
block m, is distance A below from initial position corresponding to 1= 0,

mRz) y?

2

7 | g3 a8k —km gh a

(as angular velocity w = v/R for no slipping of thread.)

%(m1+m2)v2+%(
But v’ = 2wh
So using it in (1), we get

2(my~km ) g

W= m+2(my+m,) @

Thus the work done by the friction force on m,
1 2
A= ~lhmgh= —kmg Fhed

mhnl(ml—hnl)gztz
m+2(m;+m,)

(using 2).

In the problem, the rigid body is in translation equiibrium but there is an anguiar retardation.
We first sketch the free body diagram of the cylinder. Obviously the friction forces, acting
on the cylinder, are kinetic. From the condition of translational equlibrium for the cylinder,

mg= N, +kNy; N,= kN,

12

mg
HCHCC, NI- W’ Nz" k1+k

For pure rotation *of the cylinder about its

rotation axis, N, = I§§, A

by

mR* %

o, —kN,R-kN,R= ——8, KN,
2 “ @

2 4

or, _kng(l-bk)‘mR 8 'f

144k° 2 7 ‘//’

PO 1€ £Y.5T- 7

(1+£%)R 7 /

>
=

Now, from the kinematical equation,
w?= w +2B,Ap we have,
ol (1+k%)R

w(1+5)g " because w=
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Hence, the sought number of turns,
2 2
n-é&- wy {1+k°)R
2 Brk(l+k)g

1.24% 1t is the moment of friction force which brings the disc to rest. The force of friction is
applied to each section of the disc, and since these sections lie at different distances from
the axis, the moments of the forces of friction differ from section to section.

To find N,, where z is the axis of rotation of the disc let us partition the disc into thin
rings (Fig.). The force of friction acting on the considered element
dfr= k{(2rrdro)g, (where o is the density of the disc)
The moment of this force of friction is
dN,= ~rdfr= ~2nkﬁgr2dr
Integrating with respe;t to r from zero to R, we get

N, = ~23tk0gfr2dr= *%nkogRs.
]

AZ
For the rotation of the disc about the stationary dr
axis z, from the equation N, = I,
2 s_ (nR%0)R? kg
BRngR 5 $, or B, 3R

Thus from the angular kinematical equation
@, = @y, + Bt

3R w
- wg+| -8 . 0
0 m(,+( 3R |f o ! akg

1.250 According to the question,
1% e on, 1= _ka

dt Vo
Integrating, Yo = -% + Y,
2,2
or, ww%aﬁ*}]ﬁ+mo,(Noﬁnglhatatt=0,w=w0.)
V(JJ
Let the flywheel stops at 1= ¢, then from Eq. (1), 1= _,?J.,..z....,?,
Hence sought average angular velocity
AV
k
k22 Yoo g
47 I
0 )
<W>= - —
pia (1)0 3

X
fdt
]
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1.251

1.252

dM,
1etus use the equation —E—f = N, relative to the axis through O H

For this purpose, let us find the angular momentum of the system M, about the given
rotation axis and the corresponding torque N, The angular momentum is

M, In + mvR = (—n;—q+m)R2m

m
[where [ = EERZ and v= w KR (no cord slipping)]

So aM, _ (MR2

'—&r ) +m‘R2)ﬁz (2)

The downward pull of gravity on the overhanging part is the only external force,
which exerts a torque about the z —axis, passing through O and is given by,

N, = (?)ng

. dMZ
Hence from the equation prate N,
2
(M; +mR2)f}1n -’Eing

B = ._..mg...m&mw> 0

== IR(M+2m)
Note : We may solve this problem using conservation of mechanical energy of the system’
(cylinder + thread) in the uniform field of gravity.

Thus,

(a) Let us indicate the forces acting on the sphere and their points of application. Choose
positive direction of x and ¢ (rotation angle) along the incline in downward direction and
in the sense of @ (for undirectional rotation) respectively. Now from equations of dynamics
of rigid body i.e. F,= mw_ and N_= I i, we get:

mgsina—f = mw 03]
and frR= %mszi @
But fr= kg cosa )

In addition, the absence of slipping provides
the kinematical realtionship between the
accelerations :

w= §R 4
The simultancous solution of all the four
equations yields :

kcosaz %—sina, or kx %tana

(b) Solving Egs. (1) and (2) fof pant (a)}, we get :
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w--g sin Q.
e™ Fgsma

As the sphere staris at r= 0 along positive x
axis, for pure rolling

v, ()= w, t= :ngsinaz 5
Hence the sought kinetic energy
el 12 p2 0 7 -
T 5 mve +25mR N3 10mv(zasw v./R)

2
LA 3 e sin o r?
—lwd—m(,fgsma:) 14mg23m at

(2) Let us indicate the forces and their points of application for the cylinder. Choosing
the positive direction for x and ¢ as shown in the figure, we write the equation of motion
of the cylinder axis and the equation of moments in the C.M. frame relative to that axis
i.e. from equation F, = mw_and N, = I §,.
2
~2T=mw_; 2TR = “mi—ﬁ

As there is no slipping of thread on the cylinder
w,« R
From these three equations

T 6 13N, B 5R 5 x 10% rad/s?

{b) we have B = —-‘i

So, w, = §g>0 or, in vector form W, = %g’

P=F-¥=F- (1)

- m?-(%é’f) - %mgzt
Let us depict the forces and their points of application corresponding to the cylinder attached

with the elevator. Newton’s second law for solid in vector form in the frame of elevator,
gives :

2T + mgs m (- W) = miw N . AT T
The equation of moment in the C.M. frame
relative to the cylinder axis i.e. from OO )) i )))
st I ﬂz‘ - mg‘ fwo
2 2
21R = ﬂRi—a ”‘g =
MW,

{as thread does not slip on the cylinder, w' = R ]
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1.255

1.256

mw
or, T P
AS(DTH W
so in vector form
= mw
T= - 4 (2)

Solving Egs. (1) and (2), W = %(}g" - W) and sought force
Fe ol Sm@-).

iet us depict the forces and their points of application for the spool. Choosing the positive
direction for x and @ as shown in the fig., we apply F, = mw_ and N_;= I f_and get

0

mgsina-Te mw; Tr= I
“Notice that if a point of a solid in plane motion
is connected with a thread, the projection of
velocity vector of the solid’s point of contact
along the length of the thread equals the velocity
of the other end of the thread (if it is not
slacked)”

Thus in our problem, v, = v, but vy = 0,

hence point P is the instantaneous centre of
rotation of zero velocity for the spool. Therefore

v, = wr and subsequently w, = fr. A1)
Solving the equations simultancously, we get l’/
- £222 - toms m
i+ —3 g
mr

Let us sketch the force diagram for solid cylinder and apply Newton’s second law in
projection form along x and y axes (Fig.) :

fri+ fry= mw, O
and N, +Ny~mg-F=0
or N, +N,= mg+F 2)

Now choosing positive direction of ¢ as shown
in the figure and using N, = I P,

we get

2 2
FR-(fry+ fryR="Tp= P22 (3)

[as for pure rolling w_= AR ]. In addition to,
fri+ fro=k(N;+N) “@
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Solving the Egs., we get

3kmg _Skmg
Fs o5y O Fan= 3735

k(N, +N,)

and wc(mm—-——l,;r——
L3 k 3kmgl_ 2kg
m{’”g*Fm]'m[’"g"z-%} 2 -3k

i29

(a) Let us choose the positive direction of the rotation angle ¢, such that w,, and f, bave

identical signs (Fig.). Equation of motion, F,= mw_ and N = I_§, gives :

Feosa~fr=mw_:frR-—FreIf = ymRzﬁz

In the absence of the slipping of the spoot w_ = B, R
Fleos o~ (r/R)]

m{l+y)
{b) As static friction (fr) does not work on
the spool, from the equation of the increment
of mechanical energy A_, = AT

2
1 51 2 Ve 1

A, = ——mvc+-2—7mR E}--x i—m(l +y)vf

From the three equations w_, = w, =

=2

1 1 1 2
= 2m(lxr'y)ZWch 2m(1+y)2wc(2wcz )
"
LR
Fz(cosa—R)r
2m(l+y)

r
, where cos o > —
R

f

®

Note|that at cos oo = r/R, there is no rolling and for cos a < /R, w,, <0, ie. the spool

will move rowards negative x-axis and rotate in anticlockwise sense.

For the cylinder from the equation N, = I §, about its stationary axis of rotation.

2Tr=%fz-ﬁ or pu L (1)

For the rotation of the lower cylinder from the
equation N, = I_§,

2
mr o v AT
2Tr 2 g’ or, B T 8
Now for the translational motion of lower
cylinder from the Eq. F = mw_ :
mg—-2T= mw, )

As there is no slipping of threads on the
cylinders :
W= [ r+fr=2pr 3)
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Simultaneous solution of (1), {2) and (3) yields

mg
T 0

Lt us depict the forces acting on the pulley
and weight A, and indicate positive direction
for x and @ as shown in the figure. For the
cylinder from the equation F_« m W and

N =125, weget

Mg+T,-2T= Mw, (1)
Iw,
and 2TR+T, 2R}= i = e )
For the weight A from the equation
F o= mw,
mg - T, = mw, )]

As there is no slipping of the threads on the
pulleys.

We= W +2pR=w +2w = 3w, )
Simultaneous solutions of above four equations
gives :

3M+3meg
w, = T
- (M +9m+ ......é.)
R

(a) For the transiational motion of the system (m + m,), from the equation : F_= mw,,
Fu= (m+ myw, or, W= F/(m; + my) {1
Now for the rotational motion of cylinder from the equation : N = I B,

my r 2F

Fr= 5 p eor 51'-—"-'-; @)

But wg= w, +Br, So
F 2F F(3m+2m)

Wy = e @ i (3

mtmy o my my (my +my)
(b} From the equation of increment of mechanical energy : AT= A,
Here ATw= T{1}, so, T(h= A_,
As force F is constant and is directed along x-axis the sought work done.

Ao = Fx

(where x is the displacement of the point of application of the force F during time interval t )
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1. 5 Fi2@m +2my)
’F(z“’x‘ TGy ey T 1@
{using Eq. (3)

Alternate : T(0) = T, nianon (O + Troargs (1)

2
Ft ]2 1m1rz(2}r, )_ F2t2(3m1+2m2)

1
T 2(m1+m2)((m1+ Y272 mr 2my {m,, my)

Choosing the positive direction for x and ¢ as shown in Fig, let us we write the equation
of motion for the sphere F =mw_ and N_ =1 §,

2
Jr=myw,; frragmzrzﬁ

(w, is the acceleration of the C.M. of sphere.) ‘P
For the plank from the Eq. F, = mw,_ G—'> X
F-f=mw
In addition, the condition for the absence of fr
slipping of the sphere yields the kinematical fr m -
. . . 7 r
relation between the accelerations :
wio=wy+ 87 WITITIT 7777777
Simultancous solution of the four equations vields :
F 2
Wy % and Wy Wy
my+ S my

(2) Let us depict the forces acting on the cylinder and their point of applications for the
cylinder and indicate positive direction of x and ¢ as shown in the figure, From the
equations for the plane motion of a solid F « mw_ and N_= I § :

kmg=mw_ or w,= kg 43

b3
-bngR--@-g;B" or B, = -2% 2

Let the cylinder starts pure rolling at ¢ = f;after
releasing on the horizontal floor at 1= 0.

?

From the angular kinematical equation
w - o, +B1 G_y x
74
or m-(s;o—ZRt (3 B
From the equation of the linear kinematics, ﬁ"
777777777717, (/e

V™ Voo ¥ W L

or v, = O+kgt, )
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But at the moment ¢ = £, when pure rolling starts v, = ©R

wy R
Thus Iy~ ke

{b) As the cylinder pick, up speed till it starts rolling, the point of contact has a purely

transiatory movement equal to %— w, tg in the forward directions but there is also 2 backward

movement of the point of contact of magnitude (w, 71, - %B tg) R. Because of slipping

the net displacement is backwards. The total work done is then,

A, = kmg [%wc & - o+ ﬁzﬁ)ﬁ]
- kmg [%kgtg - %(n%ﬁ) 2R - wotﬂR]

wyR [o,R @R mngz
*”"gizg[?+‘3““wo“] "

The same result can also be obtained by the work-energy theorem, A, = AT.

Lzt us write the equation of motion for the centre of the sphere at the moment of breaking-off:
m /(R +1) = mg cos B,

where v is the velocity of the centre of the sphere at that moment, and © is the corresponding
angle (Fig.). The velocity v can be found from the energy conservation law :

mgh = %‘-mv2 + —;—Imz,

where I is the moment of incrtia of the sphere
relative to the axis passing through the sphere’s hI,

centre, ie. [ = ;—mrz. In addition,

v=ar; b= (R+r){1-cosB)

From these four equations we obtain

m=V10g(R+r)17rz. 0

Since the cylinder moves without sliding, the centre of the cylinder rotates about the point
O, while passing through the common edge of the planes. In other words, the point O
becomes the foot of the instantaneous axis of rotation of the cylinder.

It at any instant during this motion the velocity of the CM. is v, when the angle (shown
in the figure) is B, we bave

myv?
X - mgeosfi-N,
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where N is the normal reaction of the edge

N
o1, v%uchosB—m,f* (B

From the energy conservation law,

2y
1. v 1
EI"E%*’—"EI“ ;‘R%‘ mgR {1 -cosP) \
2 ////////////o m
But Iy= -—m;:—-ns-mﬂz - -;-mRz,
(from the paraliel axis theorem) oL
Thus, vg- v‘2,+-g-gR (1 - cos ) (94}

From (1) ard (2)
R NR
vg- gg‘*(?oosﬁ-ﬂ -

The angle B in this equation is clearly smaller than or equal to o so putting i = o we get

N,
v§= 3-33-(7cosa—4) - -—;{E

where N, js the corresponding reaction. Note that N = N, No jumping occurs during
this turning if N, > 0. Hence, v, must be less than

Voax ™ \/%(?cosa-4)

Clearly the tendency of bouncing of the hoop will be maximum when the small body A,
will be at the highest point of the hoop during its roiling motion. Let the velocity of CM.
of the hoop equal v at this position. The static friction does no work on the hoop, so from
conservation of mechanical energy; £, = £,

2 2
or, O +%mvg+ -%-mR2 (%)-) -mgR= %m (2\»)2 + %-mv2 + %mRz ("R‘;) +mgR
o, 3v7a vi-2gR €Y
From the equation F, « mw, for body A at final position 2 :

2

mg+N'= mw*R= m(%) R @

—-——-—*

1 W
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As the hoop has no acceleration in vertical direction, so for the hoop,

N+N =mg (3
From Eqgs. (2) and (3),
mv:
Nw 2mg- R @
As the hoop does not bounce, Nz 0 )
So from Egs. (1), (4) and (5),
8gR-

b
—5g—=0 o 8gR= Vi
Hence ves VBgR

Since the lower part of the belt is in contact with the rigid floor, velocity of this part
becomes zero. The crawler moves with velocity v, hence the velocity of upper part of the
belt becomes 2v by the rolling condition and kinetic energy of upper part

= % 221— (21;)2 = mvz, which is also the sought kinetic energy, assuming that the length of
the belt is much larger than the radius of the wheels.

The sphere has two types of motion, one is the rotation about its own axis and the other
is motion in a circle of radius R. Hence the sought kinetic energy

1 2 1 2
T = EI1W1+-2—12332 (1)

where I, is the moment of inertia about its own axis, and [, is the moment of inertia about
the vertical axis, passing through O,

But, I, = 32~mr2 and 1, = g—mr2 +mR* {using paraifel axis theorem,) 2)

In addition to

@y - fand ) = kti 3)

. . ) 7 2/
Using (2) and (3) in (1), we get T'' = o m# (1 + ";Ei}

For a point mass of mass dm, looked at from C rotating frame, the equation is
— g
dmWw = f+dmo’ 7 +2dm (V" x @)
where 7~ = radius vector in the rotating frame with respect 1o rotation axis and
7 - velocity in the same frame. The total centrifugal force is cleardy
e —
Fo = 2 dm o’ 7 = mmch

E: is the radius vector of the C.M. of the body with respect to rotation axis, also

poed b
F ,=2mv, xo

where we have used the definitions
el et o s
ch=2dmr and mv, azdmv
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Consider a small element of length dx at a distance x from the point C, which is rotating
in a circle of radius r = xsin 0

Now, mass of the ejlement = (-?—) dx

So, centrifugal force acting on this element

- L?—) drx w’x sin © and moment of this force
about C,

jdN|= (,—?—)dxwzxsiue-xcose

2
W
2 sin 2 0 % dx

and hence, total moment
12

2
mw” 1 242 .
N= 2f 57 sin26 xzdxmm24mm 1“s5in29,

o
Let us consider the system in a frame rotating with the rod. In this frame, the rod is at
—
rest and experiences not only the gravitational force m g and the reaction force R, but also
—
the centrifugal force F_.

In the considered frame, from the condition of equilibrium ie. Ny, = 0
or, Ny=mg -%sin 6
where N, is the moment of centrifugal force
about O. To calculate N, , let us consider an

clement of length dx, situated at a distance x
from the point O. This element is subjected to

)

a horizontal pseudo force (l?)dxmzxsin 8.
The moment of this psendo force about the
axis of rotation through the point O is

dN ¢ = (ﬂ) drw’xsinOxcos0

!

mmz

7 sin 8 cos 8 2 dx

1

2 242

So N, -f'";“ sin 8 cos 0 dx = ””’;I sin 0 cos 0 e
0

it follows from Eqgs. (1) and (2) that,

3 -1 3
f= | =8 8= W28
cos (20321) or cos (2(»21) {3)
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When the cube is given an initial velocity on
the table in some direction (as shown) it
acquires an angular momentum about an axis
on the table perpendicular to the initial velocity
and (say} just below the C.G.. This angular
momentum will disappear when the cube stops
and this can only by duc to a torque. Frictional
forces cannot do this by themselves because
they act in the plain containing the axis. But
if the force of normal reaction act eccentrically
(as shown), their torque can bring about the

vanishing of the angular momentum. We can - Initial
calculate the distance Ax between the point of velogty
application of the normal reaction and the C.G.
of the cube as follows. Take the moment about / .
T the
C.G. of all the forces. This must vanish because Initial inﬁﬁ’f L ;O ”
the cube does not furn or twrable on the table. angular AN
. o on the table
Ther if the force of friction is fr momentum
a
—= N Ax
fr 2

But N= mg and fr= kmg, so

Ax = fa/2
In the process of motion of the given system the kinetic energy and the angular momentum
refative to rotation axis do not vary. Hence, it follows that

1 M!I? 2 1 2,7 42 1M12 2
“2’**"3—'"(!)0= —z-—m{u) 1“4y +-2—*""3""”w
{w is the final angular velocity of the rod)
2 2
and M;—-mo= M;—-m-ﬁ-mlzm

From these equations we obtain

w = wo/(i + ;%{)and
Ve wol/ Vi+3m/M

Due to hitting of the ball, the angular impulse received by the rod about the C.M. is equal

to p % If w is the angular velocity acquired by the rod, we have
m? B 3
277 T ®

In the frame of C.M., the rod is rotating about an axis passing through its mid point with
the anguiar velocity w. Hence the force exerted by one half on the other = mass of enc
half x acceleration of C.M. of that part, in the frame of C.M.
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1274 (a) In the process of motion of the given system the kinetic emergy and the angular

1275

momentum relative to rotation axis do not vary. Hence it follows that

2
;—mvzn %—mv’2+%(&§—)m2
and my = mv’i+w-2—w
2 2 3
From these equations we obtain
, 3m -~ 4M 4v
= (3m+4M)"‘ and @ = T

As ¥ 1 43750 in vector form v = H e
(b) Obviously the sought force provides the centripetal acceleration to the C.M. of the

rod and is

F o= mw,
2l sMv?

= Mw TP RTY 7Y
1{1+4M/3m)

{a) About the axis of rotation of the rod, the angular momentum of the system is conserved.
Thus if the velocity of the flying bullet is v.

2
mvl = (m12+§—§~)&}

my

o m+y- H
3

Now from the conservation of mechanical energy of the system (rod with bullet} in the
uniform field of gravity

2

—%{mzh%’—) 2o (M+m)gL(1-cost) @

Imv
~ A m << M (1)

/
fbecause C.M. of rod raises by the height %( 1-cosa) ]

Solving (1)} and (2), we get
4 / . 1 /6 .
v= (%) —i—gl sm% and o = ~15~ sm-g-
(b} Sought Ap = [m(ml)-»-M(w-z{)]—mv

where o/ is the veloccity of the bullet and mé— equals the velocity of C.M. of the rod

after the impact. Putting the value of v and w we get
1 gl sin 2
Apm 5 my M = sin =

This is caused by the reaction at the hinge on the upper end.
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{c) Let the rod starts swinging with angular velocity o', in this case. Then, like part (a)
2

(Ml 2) ' , 3mvx
myx= | ———+mx” [0 or wm
3 Mi?
Final momentum is
!
M M 3 x
r [ Rnideall - — 7’ - — —
Py=mxw +{ym ldy 2ml Smvy
So, Ap= pf-p-mv(:?.; 1)
. , 2
This vanishes for Xxm 51

(a) As force F on the body is radial so its angular momentum about the axis becomes
zero and the angular momentom of the system about the given axis is conserved. Thus

2 5 2
wy+tmwgR =

W or = M (1+2m)

(b} From the equation of the increment of the mechanical energy of the system :
AT=A_,

1MR® , 1{MR?
272 202

——+mR )w§ = A,
Putting the value of w from part (2) and solving we get

_mos R om
o p M

(2} Let z be the rotation axis of disc and @ be its rotation angle in accordance with
right-hand screw rule (Fig.). (¢ and ¢ are to be measured in the same sense algebraically.)
As M, of the system (disc + man) is conserved and M _ (..., = 0, we have at any instant,

R? '
0=T~%~miﬂ+m1[(m)ﬂ+(@)x]1a

2 adr dt dr
d ml d [
or, P= _m1+(m2/2) ?

/ m,
On integrating fd(p- -f m)d
4 0\ml+(m;_,/2)

( my ,
— 1 (1)
2

2
This gives the total angle of rotation of the disc.

or, P= -
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(b} From Eq. (1)
do_ (_m \do _ (_m )y

t

dt m, | dt R
m1+-§E ml'l‘%z“
Differentiating with respect to time “5
dz(P__ m \1dv(s)
de? m, |R dr
mi+_§.—
Thus the sought force moment from the Eq. N = If,
2 . 2 *‘m
NomR de mR[ m N1dv(:) 7 "‘w
Z2 et 2 my, {R dt
m+
m, m, R !
Hence N = 1M R dv (t)

z “21n1+m2 dr

{a) Frome the law of conservation of angular momentum of the system relative to vertical
axis z, it follows that:

Lo, +hoy= ([ +1)o,
Hence w, - (Ilmlz+12m2z)/(11+1'2) (83
Not that for w, > 0, the corresponding vector @ coincides with the poitive direction to the

z axis, and vice versa. As both discs rotates about the same vertical axis z, thus in vector

form.
@ L@ + Lo, [ (1 +1)
However, the problem makes sense only if (?)1 e E')z or o“.\: g 63;

(b) From the equation of increment of mechanical energy of a system: A, = AT.

1 1
- .2_(11+12)m3-%11mg+512w§,
Using Eq. {1)
51, 2
A= “m(ﬁ)h“wh)

For the closed system {disc + rod), the angular momentum is conserved about any axis.
Thus from the conservation of angular momentum of the system about the rotation axis
of rod passing through its C.M. gives :

L1 qm?
mvz- mv2+ 12 w (1)



140

1.280

(v' is the final velocity of the disc and  angular velocity of the rod)

For the closed system lincar momentum is also
conserved. Hence

my=my' +ymy, (2)
(where v, is the velocity of C.M. of the rod)
From Egs (1) and (2) we get

vts%@- and v v e

Applying conservation of kinetic energy, as the collision is elastic

1 2 4 .2 1 2 1 nml
Emv2 SN 4 5 S (3) ]
or v - v? s dqw? and hence v+ v = 4y, 1\
Then /2
’ = 4 - - }.2 vV l
v ——ﬂ4+nvandm @l il

Vectorially, noting that we have taken nd parallel to v

r'-(mﬁ““ );;'
441

So,z?’nﬂforn-dand i Lt v forn>4 O—-)-——y‘ﬂ

See the: diagram in the book (Fig. 1.72)
{a} When the shaft BB’ is tumed through 90° the platform must start turning with angular
velocity §2 so that the angular momentum remains constant. Here
I o
([+1,)Q= Lo, or, Q= T+T,
The work performed by the motor is therefore

1 I of

27+1,
If the shaft is turned through 180°, angular velocity of the sphere changes sign. Thus from
conservalion of angular momentum,

IQ -« o,

—;-(I+In)£22=

(Here - I, 0, is the complete angular momentum of the sphere i. ¢. we assume that the

angular velocity of the sphere is just — wg). Then

Wy
@=%T
and the work done must be,
2 2
1.2, 1 2 1 2 My oy
EIQ +§Io“’0 -'2-19(90 =7
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(b) In the case (a), first pan, the angular momentum vector of the sphere is precessing
with angular velocity £2. Thus a torgue,
2
lyw, Q= __o_‘_"_niis needed
070 I+l, )

The totai centrifugal force can be calculated by,

f—-w Xxdx = —m!0w2

!
Then for equilibrium, O

l f
(T2~T1)2== mg2

1 2
and, i+ 1= =mlw
Thus T, vanishes, when

2 2 /22 .
w l,w I*Grad/s e t

F

-

See the diagram in the book (Fig. 1.71}.

(a}) The angular velocity @ about OO ' can be resolved into a component parallel to the
rod and a component @ sinf perpendicular to the rod through C. The component parallel

to the rod does not contribute so the angular momentum

M= [osing = —l%mlzwsinﬁ

.

90-8

v =

Also, M, = MsinB= i%mlzwsinze

This can be obtained direcﬂy also,

{(b) The modulus of M does not changc but
the modulus of the change of M s | AM i

|AM | = 2Msin (90 - 0) = i—z-mizwsinm

{c) Here M, = M cosO = { wsinO cosd Vi ~— :
av wdr 1 2 2.2
Now ol I @ sin@ cosB p 24 ml©w” sin"0
—

as M precesses with angular velocity .
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1.283 Here M= o is along the symmetry axis. It has two components, the part Jw cosO is
constant and the part M, = ' sin@ presesses, then

i
I% » I wsind ® = mglsind

or, w’ = precession frequency = % = 0-7rad/s
(b) This force is the centripetal force due to precession. It acts inward and has the magnitude
!Fi - lz miw'zﬁzl = ma'?lsin® = 12mN.

p; is the distance of the i th element from the axis. This is the force that the table will
exert on the top. Sec the diagram in the answer sheet

M4
Mi

ML

‘mg_ {

1.284 Sece the diagram in the book (Fig. 1.73).

The moment of inertia of the disc about its symmentry axis is %—mRz. If the angula

velocity of the disc is ® then the angular momentum is -1-m R?®. The precession frequency

2
being 2 n,

i
we have M -}“mmRzmenn
de 2

This must equal m (g +w}l, the effective gravitational torques (g being replaced by
g+ w in the elevator). Thus,

w= LML 300 radss
aR*“n
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The effective g is V gE +w? inclined at angle tan” —‘éf— with the vertical. Then with reference

to the new " vertical” we proceed as in problem 1-283. Thus

Voot
' = T—I—%n-;tl = (8 rad/s.

The vector w forms an angle 68 = tan"’l-‘g- = 6° with the normal vertical.

The moment of inertia of the sphere is -g—mR ? and bence the value of angular momentum

is %mRzm. Since it precesses at speed ' the torque required is
% mR o = F'l

So, F'm -52~mR2mm'/l = 300N
{The force F' must be vertical.)

NPT | .1 .
The moment of inertia is -imr2 and angular momentum is i—mrzm. The axle oscillates

about a horizontal axis making an instantancous angle.
2
P= PuSx

This means that there is a variable precession with a rate of precession —d% The maximum

T
value, a lorque fo £

value of this is ‘When the angle between the axle and the axis is at its maximum

2mp xmr? o

1. 2 m_ 'm .
2mr W T T acts on it
2 g
The corresponding gyroscopic force will be T 2 =90 N
The revolutions per minute of the flywheel being », the angular momentum of the flywheel
is I x 2nn. The rate of precession is }%

Thus N = 2/ NV/R = 597 kN. m.

As in the previous problem a couple 2nfnv/R must come in play. This can be done if a
2nlny

Rl
forces. The force on the outer rail is increased and that on the inner rail decreased.

The additional force in this case has the magnitude 1-4kN. m.

force, acts on the rails in opposite directions in addition to the centrifugal and other
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1.292

ELASTIC DEFORMATIONS OF A SOLID BODY

Variation of length with temperature is given by
Lw [, (1+aAt) or ;ﬂa ali= ¢ 1)
0
But Em %,

Thus o = aArE, which is the sought stress of pressure.
Putting the value of a and E from Appendix and taking Ar= 100°C, we get

o= 22 x10° atm.

(a) Consider a transverse section of the tube and concentrate on an element which subtends
an angle A at the centre. The forces acting on a portion of length Al on the element are

(1) tensile forces side ways of magnitude cArAL
The resultant of these is

20ArAkin —422- OArAIAQ

radiaily towards the cente.
(2) The force due to fluid pressure = prAgAl
Ar

Since these balance, we get p_ .= O P

where o, is the maximum tensile force.

Putting the values we get p_ = 19-7 atmos.

(b} Consider an element of area dS = n (7 AB/2 Y about z ~axis chosen arbitrarily. There

are tangential tensile forces all around the ring of the cap. Their resultant is

A8 . AB
0[2::(1”-5") Ar] sin >
Hence in the limit
2
pmss(r-%ﬁ) - omn(%g)ArAB
AG

20, Ar e
m = w395 atmos. 2

Of Py

Let us consider an element of rod at a distance x from its rotation axis (Fig.). From

Newton’s second law in projection form directed towards the rotation axis

- dT = (dm)wzx- -’-nl—wzxdx

On integrating
mm2 ch

7t C ( constant )

T
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But at X = x-;- or free end, T= 0
2 ;2 2
i ma 1
Th L - -
us 0 3 4 +C or C g
2 2
Hence T= ﬂ%’”(%—%] ¢
>
mo?l
Thus Tox™ (at mid point)
Condition required for the problem is l = 4%4—- |
Tpax™ S Op ax
2
'] 24/%%n
So, 2 -Somorm-l .

Hence the sought number of 1ps

n= 2. 1 V L [using the table n= 08 x 102rps 1
2x 7l P

Let us consider an element of the ring (Fig.). From Newton’s law F,= mw, for this

element, we get,

Td0 = (-%de) o?r  [see solution of 1.930r 1.92}
So, Y %mzr
Condition for the problem is : i XT

T mo’r
---—2-5 g, o —*‘5";55 O

w 2%
2 mio,r o, /ﬂ
or, wwswmi(mrp)‘-‘;‘i v
Thus sought number of 1ps T
1 4/%
Using the table of appendices 7 = 231ps

Let the point O desend by the distance x (Fig.). From the condition of equilibrium of point
a.

2TsinB= mg or T JMZsine ™ (172 +x 1)
2

Now, I s=o=¢eE or T= eEJté-—- (2)
n(d/2) 4

( o bere is stress and € is strain,)
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In addition to it,

v (1/2)24”3&;2 —-l"

7 e Y
F E 1), (2) and (3 7’ Zé i 2/2 g
rom Egs. (1), (2) and (3) ANO %
x mgl :
X - = as x< </ X
nEd? i
(7 NG
0
So '4"{’23"’ ml2
" 2% nEd
or, le(j’z.:%%f) = 25 em

Let us consider an element of the rod at a distance x from the free end (Fig.). For the
considered element ‘7'~ T’ are internal restoring forces which produce elongation and
dT provides the acceleration to the element. For the ¢lement from Newton’s law :

m Fo Fo
dTu(dm)w-(de)m = Idx

As free end has zero tension, on integrating the above expression,

T Fﬂ Fﬂ
dl =— Fdx or T =—x
I !
L &
Elongation in the considered element of lenght dx :

F
2E=F () dx=-s%drs—£t—dx—

SEL

!

Th I elengati T f demal

us total elengation Eu:g.ﬁ, xdx=5om

x I_ s 7+dr —>h

Hence the sought strain D e "*"')d x(———-

- '§' » Fo
CT1T2sE

Let us consider an element of the rod at 2 distance r from it’s rotation axis. As the element
rotates in a horizontal circle of radius r, we have from Newton’s second law in projection
form directed toward the axis of rotation :

T-(T+dT} = (dm)*r
or, -dT = (-?—dr)mzr- «?—-mzrdr

-
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At the free end tension becomes zero. Integrating the above experession we get, thus

!
- fra
T r

242 2 2 y)
mw (1 =r mw*! r
Thus Te 7 ( 5 ),. 5 (1-—-!—2]

Elongation in elemental length dr is given by :

Lo T
E 7 dr SEdr

(where S is the cross sectional area of the rod and T is the tension in the rod at the
considered e]ement)

muw” 1 w1 r
of, dE= > SE ( -Iz)dr s
Thus the sought elongation
! < % >
! r » , at
ma’l w” r e
5= [as- 05 ( ;2)"’ Ar

mcsIZl (SIp) 2
o 8= 533 - F5p o'l

243
= é&%’l—-— (where p is the density of the copper.)

Vohime of a solid cylinder

V =nrl
So AV _n=2rArl arAl_2Ar Al )
’ 14 xrtl artl r !
But longitudinal strain Al/l and accompanying lateral strain A r/r are related as
Ar Al
PR @
Using (2) in (1), we get :
AV AI
o - 3
v (1-2p ©)
Al -F/nr?
But T = 7

(Because the increment in the length of cylinder Al is negative)

AV
v nrz

SO, (1 - 2}“')
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Thus, AV = 3—51 1-2p)

Negative sign means that the volume of the cylinder has decreased.

{a) As free end has zero tension, thus the tension in the rod at a vestical distance y from
its lower end

T= T8y )
Let 9l be the clongation of the element of length dy, then

T -U—E('dey

T dy - ——ggz= p gvdy/E (where p is the density of the copper)

Thus the sought elongation
!
M [ormpgf 22
A E

(b) If the longitudinal (tensile) strain is £ = -AT{ , the accompanying lateral (compressive)

pgl?/E @

DO

strain is given by

e'-%—t-—us &)

Then since V = n 72! we have

AV 2Ar Al

14 r i

Al .
= (1-2p) 5 [Using (3)]
Al . . .
where 7 is given in part (a), u is the Poisson ratio for copper.

Consider a cube of unit length before pressure is applied. The pressure acts on each face.

The pressures on the opposite faces constitute a tensile stress producing longitudianl com-

pression and lateral extension. The compressions is % and the lateral extension is u%

The net result is a compression

%(1 -2u) in each side.

AV Al

Hence é‘-}m = -—E(i 2u) because from symmetry ~= 3 T
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{b) Let us consider a cube under an equal compressive stress O, acting on all its faces.
AV o

Then, volume strain = - E2 {1
where k is the bulk modulus ‘of elasticity.
g 3o

So i~ F 3-2uw

3 1
or, Ew3k(1-2p)= =(1~2p)as k= —

p p
u s 1 if £ and B are both to remain positive.

2

A beam clamped at one end and supporting an applied load at the free end is called a
cantilever. The theory of cantilevers is discussed in advanced text book on mechanics. The
key result is that clastic forces int the beam generate a couple, whose moment, called the
moment of resistances, balances the external bending moment due to weight of the beam,
load etc. The moment of resistance, alsp called intemnal bending moment (1.B.M) is given
by
1LBM. = EI/R

Here R is the radius of curvature of the beam at the representative point (x, y). I is called
the geometrical moment of inertia

I-fzzds

of the cross section relative to the axis passing through the netural layer which remains
unstretched. (Fig.1.). The section of the beam beyond P exerts the bending moment
N {x) and we have,
EI
R
If there is no load other than that due to the
weight of the beam, then

Nx)= %pg(l-—x)zbh

- N{x)

VITEREIR SN RTRRTEITR RN R ENEIILITA ds
3

Z

R

where p = density of steel.
Hence, at x= {

I\ pglibh
R~ 2EI

Here b= width of the beam perpendicular to paper.

k2
bi
A]SO, ISIZZMZ= —'l-i—
~h72

2
Hence, (1) « 8L | 6121 km) -
R}, EW
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We use the equation given above and use the result that when y is small

WY g £y N@

R d? T & ET
(a) Here N (x) = N, is a constant. Then integration gives,
dy Nyx
" ET O
But (%) = 0 for x= 0, so C, = 0. Integrating again,
Ny x?
Y= 2E

where we have used y= O for x= 0 o set the constant of integration at zero. This is the
equation of a parabola. The sag of the frec end is
12

Nﬁ
Aeyle=D= 30T

(b} In this case N (x} = F (I - x) because the load F at the extremity is balanccd by a
similar force at F directed upward and they constitute a couple. Then

d’y F({-x)
ar* EI
. dy F(lx-x%2)
Integrating, Ty St C,
As before C, = 0. Integrating again, using y= 0 for x= 0
£
F{2 6 P
y= El here A= m
Here for a square cross section
a2
1=fz2adz= a*/12.
~a/2

One can think of it as analogous to the previous
case but with a beam of length //2 loaded

upward by a force F/2. TF/Z l F/ZT

3 Y
Fli | P P
Thus A= e .~ l .- ,A

48 El N

-
-
-
e sy o

On using the last result of the previous problem.

{a) In this case N (x}= pg bh(l~x)* where b= width of the girder.

Also I= bH /12 Then,
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Ebidy gbh

PR (2-2x+5).

3

Integrating, %- %ﬁ%(lzx—lrz+%—)
using % = O for x = Q. Again integrating

o172 1 o

r= Eh? 2 T3 712

6pgl’ 1
Thus P P (2 3t 12)

“Gpgl“ 3 3pgl4
B 12 2ER

2
(b) As before, EJ %n N (x) where N (x) is the bending moment due to section PB.

This bending moment is clearly
2

N*IW@@*Q*M@bﬂ

- w(212-2x2+-x22--)—w1(21—x)= w(izi-—xl)

(Here w= p g bh is weight of the beam per unit length)

2
Now integrating, Ef ix_y - W (-x;-m - f.im[,) +6 f. o 21

>
A Y x B
or since gx= 0 for xw I, cy= wi’/3
dx » o P

4 3
28N wilx
Integrating again, Ely= w(24 3 )+ PR

As y=0for x= 0, ¢, = 0. From this we find

S5pglt
2E W

swit
A= ylm D= 22/ BT

The deflection of the plate can be noticed by going to a co- rotating frame. In this frame
cach element of the plate experiences a pseudo force proportional to its mass. These
forces have a moment which constitutes the bending moment of the proeblem. To calculate
this moment we note that the acceleration of an element at a distance E from the axis is
a= &P and the moment of the forces exerted by the section between x and [ is
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1
N- pIthEsz- -g-plhﬁ(l?’-as).
x
From the fundamental equation

2
El%— Tolhp (-5,

+h/2
3

The moment of inertia I-fzzldz- -li-g—-

—h/2
Note that the neutral surface (Le. the surface which contains lines which are neither

stretched nor compressed) is a vertical plane here and z is perpendicuiar to it.

d’y 4 .
——-Zx - _f_f%zﬂ (I* - x%). Integrating

dy 4d4pfi,s x_4
ﬁ_ W(l X 4 + <y
Since %= 0, for x= 0, ¢, = 0 Integrating again,
P2 .xs)
+¢,

y= 2B X
EW 2 20
cy= O because y= 0 for x= 0

9pp81°
SER

Thus h=yx= D=

(a) Consider a hollow cylinder of length I, outer radius r + Ar inner radius r, fixed at on¢
end and twisted at the other by means of a couple of moment N. The angular displacement
¢, at a distance [ from the fixed end, is proportional 1o both ! and N. Consider an element
of length dx at the twisted end. It is moved by an angle ¢ as shown. A vertical section
is also shown and the twisting of the parallelopipe of length [ and area Ar dx under the
action of the twisting couple can be discussed by elementary means. If f is the tangential
force generated then shearing stress is f/Ar dyx and this must equal

GOm 65}?, since 6= ’_l?
Hence, f=G Ardxi'?.

The force f has moment fr about the axis and so the total moment is

N-= GAr%rzfdx- 3—’3—’5-332‘-’&6
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(») For a solid cylinder we must integrate over r. Thus

r

dx Nngnrg'dr(pG“ 1 Ge
NS ! 21
b ~ 0
F @—E g'\‘\ \\\\
] -~
i el
H : [
; P
| P
& .
S 1 I’
N | =S
P
>
"q___...-i
-
- M
dz/Z
3
1.306 Clearly N=f2—"—-’~%ﬂ£u 5iCed -d)
d/2
using G=81GPa=81x10°

dy= 5%x107 m, d,= 3x107?m

p=20"= %mdians, I=3m

nx81lxx

N= 3 %90

(625 - 81) x 10° N'm

= 0:5033 x 10° N'm = 0-5 k N'm

1.307 The maximum power that can be transmitted by means of a shaft rotating about its axis
is clearly N w where N is the moment of the couple producing the maximum permissible

torsion, . Thus

4
P= m—‘f’"zf ‘0 = 169 kw

1.308 Consider an elementary ring of width dr at a distant r from the axis. The part outside

exeris & couple N+ -a;*dr on this ring while the part inside exerts a couple N in the

opposite direction. We have for equilibrium

dN
~dr = - dif
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where df is the moment of inertia of the elementary ring, P is the angular acceleration
and minus sign is needed because the couple N (r) decreases, with distance vanshing at
the outer radius, N (ry) = 0. Now

m 7
df mZE?dr r
o mp
Thus aN (r%_r%)radr
or, N “12""(";2’11"%2")‘{’; - r"'), on integration
2N

We assume that the deformation is wholly due to external load, neglecting the effect of
the weight of the rod (see next problem). Then a well known formula says,

elastic energy per unit volume

1 . 1
- 2stres.sxstr:nn - 50¢

This gives %——'E—E &? = 0-04 kJ for the total deformation energy.

When a rod is deformed by its own weight the stress increases as one moves up, the

stretching force being the weight of the portion below the element considered.

The stress on the element dy is 7
p:trz(i-—x)g/atrza pgll-x)

The extension of the element 15

Ade=dAx= pg(l-x)dt/E x
Integrating Al = % pE 1°/E is the extension of l d
X
the whole rod. The elastic encrgy of the clement Wi,

is
1 pgll-x pgl-x w1t de
2 E

Integrating ‘

2
AU= LaP 2@ 1 /E = %nr’w(w‘}i) o

6 i
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The work done to make a loop out of a steel band appears as the elastic energy of the
loop and may be calculated from the same.

If the length of the band is [ the radius of the loop R = -i%t— Now consider an element

ABCD of the loop. The elastic encrgy of this element can be calculated by the same sort
of arguments as used to derive the formula for internal bending moment. Consider a fibre
at a distance 2 from the neutral surface PQ. This fibre experiences a force p and undergoes

an extension ds where ds = Zd @, while PQ = s = Rd . Thus strain %{ = Ez{; If o is the

cross sectional area of the fibze, the elastic energy associated with it is

27{R
Summing over all the fibres we get

Elg . Eldg
2R Y aZ- 2R

2
}“E(E Rdp o

For the whole loop this gives,

usingfdtpu 2=,

Eln 2EIx’

R {

82
3
Now I==fz2hd2= hd

12
- 8/2
17°Ehd
6 I

So the energy is = {08k}

When the rod is twisted through an angie 9, a couple
4
xr G

N{Q)= 8 appears to resist this, Work done in twisting the rod by an angle @ is

then

[

4
fN(O)dO L :UG 2=7] on putting the values.
0

3
nrodr 2

The encrgy between radii r and r +dr is, By differcntiation, ; Gg

nrdr G@z_}chpzrz
2xrdrl I 27 °¢

Its density is

The energy density is as usual 1/2 stress x strain. Stress is the pressure p g h. Sirain is
B x p gh by defination of . Thus

U= _‘12_‘3 (o gh)2 = 235kI/m> on putting the values.
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HYDRODYNAMICS

Between 1 and 2 fluid particies are in nearly circular motion and therefore have centripetal
acceleration. The force for this acceleration, like for any other situation in an ideal fluid,
can only come from the pressure variation along the line joining 1 and 2. This requires
that pressure at 1 should be greater than the pressure at 2 i.e.

P>pPy
so that the fluid particles can have required acceleration. If there is no turbulence, the
motion can be takea as irrotational. Then by considering

ﬁ vedl= 0

along the circuit shown we infer that
v, > v,
(The portion of the circuit near 1 and 2 are

streamlines while the other two arms are at
right angle to streamlines}

In an incompressible liquid we also have div Ve O

By electrostatic analogy we then find that the density of streamlines is proportional to the
velocity at that point.
From the conservation of mass

Vi8S = v, 5, 1

But §; < §, as shown in the figure of the problem, therefore

vy > v,
As every streamline is horizontal between 1 & 2, Bernoull’s theorem becomes
P+ % pv2 = constant, which gives

P] <P235V1>v2
As the difference in height of the water cofumn is Ah, therefore
Py =Py = pgAh ey

From Bernoull’s theorem between points 1 and 2 of 2 streamline

1, | )
P1+“2‘P"1"P2*“2“PV2

1
or, Pr=pr= 5 p0 - V)
or pghhmzp0i-vD)  (3) (usingEq. 2)
using (1} in (3), we get ! I l f
2gAh > —_—
vy =5, P )
2 = 1 _.........._/—-‘\
1 2

Hence the sought volume of water Howing per see

2gAh
@ =vsS =53 2 _ 2
2 = M
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Applying Bemoulli’s theorem for the point A and B,

1
pA=pB+—2—pv1 as, v, = 0

1
o, 59"2=PA ~Pg= Ahpgg
2 Ah
So, RV £ 1
P
2Ahpyg
Thus, rate of flow of gas, = Sve § Y ———

P
The gas flows over the tube past itat B. But at A the gas becomes stationary as the gas
will move into the tube which already contains gas.

in applying Bernoulli’s theorem we should remember that % + %vz + gz is constant along

a streamline. In the present case, we are really applying Bemoulli’s theorem somewhat
indirectly, The streamline at A is not the streamline at B. Nevertheless the result is correct.
To be convinced of this, we need only apply Bernoull’s theorem to the streamline that
goes through A by comparing the situation at A with that above B on the same level. In
steady conditions, this agrees with the result derived because there cannot be a transverse
pressure differential.

Since, the density of water is greater than that of kerosene oil, it wiil collect at the bottom.
Now, pressure due to water level equals A, p; g and pressure due to kerosenc oil level

equals i, p, g. So, net pressure becomes A, p; g+ h, py 8.

From Bernoulli’s theorem, this pressure energy
will be converted into kinetic energy while
flowing through the whole A.

, 1 2

ie. A pigith,pg= EPI v

P2 e s -
Hencev = 21h+h, =g = 3m/s prebad Sy
Vel ==l

P i e e

1et, H be the total height of water column and the hole is made at a height / from the
bottom.

Then from Bernoulli’s theorem ——

)
§
I

X!

1 ~ -
Spvi= (H-hpg

5 A

K

or,v= Y(H - h) 2g, which is directed horizontally.

For the horizontal range, I= v ¢

IR EIn
e

- VIgWH=T - %é& - 2VEHR- 1D

P — p——
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2
Now, for maximum [, d H:h—h =0

which yields h= %- 25 cm.

Let the velocity of the water jet, near the orifice be v/, then applying Bernoullis theorem,
1 1
'Q“P"z"‘ h{,pgq-é-pvz

of, V= Vit-2g h, 1

Here the pressure term on both sides is the same and equal to atmospheric pressure. (In
the problem book Fig. shouid be more clear)

Now, if it rises upto z height & then at this height, whole of its kinetic-energy will be
converted into potential energy. So,

v12

1 2
Lopla hom e
5PV pgh or %%

- %"ke = 20 cm, [using Eq. (1)}

Water flows through the small clearance into the orifice. Let 4 be the clearance. Then
from the equation of continuity
(2eRd)v,= (2nrd)v= (2R ) v,

where v, , v, and v are respectively the inward [//////////////J////// (L

radial velocities of the fluid at 1, 2 and 3,
Now by Bemoulli’s theorem justbefore 2and _ _ _ _]_| ! I
just after it in the clearance R hust bR oI
12 == he ‘5‘" e

Po+ hpg=py+ 5P (@ =78 L., TeEETT
Applying the same theorem at 3 and 1 we find =—= = Ll = ”-""i,, el
that this aiso equals 23 ‘\ / “

| Aﬁf
b+ ZP"“PU 2P"'1 3

{since the pressure in the orifice is p, )

From Egs. (2) and (3) we also bence

v, =V 2gh )

1 4 v
= et

2

=Po + hpg [1 - (5;}‘) ) [Using (1) and (4)]
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1.323
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Then, work done = Fi m
Applying Bemoull's theorem for points FreIT T I
Aand B,p= -21-pv2 where p is the density é}-‘l: ~— S I
and v is the velocity st point B. Now, force N ?." ._”:::*“_ T —“—::?:Q%’;‘-E
on the piston, - === A=
1, N-==--Z=Zl B
F=ph=5pv'A @ N
where A is the cross section ares of piston, “ 4 7
Also, discharge through the orifice during time
interval £ = Sv and this is equal to the volume
of the cylinder, ie.,
v
Vm S0t or ve 5 3
From Eq. (1), (2) and (3) work done
1 1 Vv 1 2
zpval 5 pA {s:)zl 2pva/s% (as Al= V)

Let at any moment of time, water level in the vessel be H then speed of flow of water
through the orifice, at that moment will be

v=V2gH m
In the time interval di, the volume of water ¢jected through orifice,

dV = svdt (2)
On the other hand, the volume of water in the vessel at time ¢ equals

Ve SH
Differcntiating (3) with respect to time,
dav dH

=SS o dveSdH @

Eqgs. (2) and (4)
SdH=svdt or dtn-f-

dH
Jrom (2
YT @

P 4]
. S dh
Integrating, f dtw ;ﬁf *—"/—I;
0 h

Thus, t-gvgﬁ
5 v g

In a rotating frame (with constant angular velocity) the Eulerian equation is
-y

-Vp+p§’+2p(§"xc‘.ﬁ+pw2?=p%w

In the frame of rotating tube the liquid in the "column® is practically static because the
orifice is sufficiently small. Thus the Eulerian Eq. in projection form along 7~ (which is
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the position vector of an arbitrary liquid element of lenth dr relative to the rotation axis)

reduces 1o 0
:;gl?. +p o'r=0 (LD 5
€ ay 8

of, dp=p o’ rdr A == ‘:—f;__-i.;_.lﬁ_,éa

z y DR A — g
s0, f dp = p(n2 f rdr < A r Ni

Py { - h) O -

2
Thus pir) = py + 2520— [r2 - (l—h)z] (1)
Hence the pressure at the end B just before the orifice i.e.
2 *
p() = po + - @1E - ) @

Then applying Bernoull’s theorem at the orifice for the points just inside and cutside of
the end B

p +-1—pw2 (ZIh—hz)np +-1—pv2 where v is the sought velocity
L] v 2

So, y = wh -1

=i

i

The Euler’s equation is p %"f.- f-Vp= - V(p + p gz), where 2 is vertically upwards.

Now &Py )
d ’
But V)= V —;-.F ¥k Cun v @)

we consider the steady (i.e. w7 ot = 0) flow of an incompressible fluid then p = constant.

.and as the motion is irrotational Curl a0

So from (1) and (2) p'\?(%vz) = -%”(p«r pE2)

or, ”V"’(p+—§-pv2+pgz) - 0
1

Hence p+~2-pv2+pgz = constant.

Let the velocity of water, flowing through A be v, and that through B be vy, then discharging
rate through A= @, = Sv, and similarly through B= Svj.

Now, force of reaction at A,

Fy= pQpva= PSVs
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Hence, the net force,

=

tijg !
Loy

2 2 ol i
F=pS02-v}) as F, 1} F, )

SEIERT

{;Jll"l
K2 IRIAT

l'“

Applyieg Bernoulli’s theorem to the liguid
flowing out of A we get

1 1
Po + PEH = Pg + 3 PY; T
and similarly at B ==
. i
Po + pglhtAR) = py + 5 pvp BT

Hence Wi - v g— = Ahpg
Thus F = 20gSAh = 050N - =T

1

oy
ﬂii

¥
¢
l[‘.
il',!

[T

[RINR
Ei! '
|;|l:" ';li

|en
N
‘l
e,
1

i
l‘!(f "
N

Consider an element of height dy at a distance y from the top. The velocity of the finid
coming oui of the element is
ve V2 8y

The force of reaction dF due to this is dF = pdA v2, as in the previous problem,
= plbdy)2gy \
Integrating F=pgb f 2y dy
Bl
~pgb [’ ~(h-1)}= pghl (2h~1)
{The stit runs from a depth -/ to a depth i from the 10p.)
1et the velocity of water flowing through the tube at a certain instant of time be u, then

= —Q“f where Q is the rate of flow of water and = 7% is the cross section area of the tube.
ar

From impulse momentum theorem, for the stream of water striking the tube comer, in
x-direction in the time interval dt, Py ———

Fodt= ~pQudt or F« -pQu
and similarly, F, = p Qu
Therefore, the force exerted on the water stream
by the tube,
= T o
F=-pQui+pQuj
According to third law, the reaction forcg on
the tube’s wall by the stream equals (- F) =
g Fie g R ff;vf\
'pQuE“pQu}' -::..,.._.""' "!qﬂ\\
Hence, the sought moment of force about 0 g
becomes |

e i — —— i 2
Ne I x(oQuizpQuil= pQuikm %%Ik

- 2
and |N|= ﬂ%i- 070 N'm
x
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1.329 Suppose the radius at A is R and it decreases uniformaly to r at B where S = nR? and
s = 7", Assume also that the semi vectical angle at 0 is o Then
R r Y

L, L «x

So y=r+ (x - Ly

R-r
L,-L,
where y is the radius at the point P distant x from the vertex O. Suppose the velocity with
which the liquid flows out is V at A, v at B and u at P. Then by the equation of continuity

AR = v = :tyzu
The velocity v of efflux is given by

v = ¥ 2gh

and Bernoulli’s theorem gives

l;'

|i1r)#t

U]
3]

)

l"!
'

i
!
4
‘i"]p

| 1
Py + 5 PU = py + -é-pv2

t
¢

where p, is the pressure at P and pg is the

atmospheric pressure which is the pressure just
outside of B. The force on the nozzle tending
to pull it out is thea L, X Ly

F ==f (P, ~ pg) sin® 2myds

We have subtracted p, which is the force due to atmosphenic pressure the factor sin 0

gives horizontal component of the force and ds is the length of the element of nozzle
surface, ds = dx sec 6 and

Thus

4 2 %2
21 (2 2 1 2 MR~ r)
=pV ~2-[R -7 +~E5—r1)- pgh(—-—-—-}—igm——
= pgh (S-5)*/5 = 602N on putting the values.
Note : If we try 1o calculate F from the momentum change of the liquid flowing out wi
will be wrong even as regards the sign of the force.

There is of course the effect of pressure at § and 5 but quantitative derivation of F fron
Newton’s law is difficult.
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1.330 The Euler’s equation is p-%’ - ,-f-.— ﬁ.p in the space fixed frame where ?-u -pgl?

downward. We assume incompressible fluid so p is constant.

Then f’; - V(pg z) where z is the height verticaily upwards from some fixed origin. We
go 1o rotating frame where the eguation becomes

p—-ﬁrma u“?(p+pgz)+pm2ﬁ2p(§¥x63')

the additional terms on the right are the well known coriolis and centrifugal forces. In the
frame rotating with the liquid ¥ = 0 so

"?*(p+ pgz—-%pmzrz)«—- 0

or p+pgz--§-pw2r2wconstant
On the free surface p = constant, thus

zm ;’—g r* + constant
If we choose the origin at point r = 0 (i.c. the axis) of the free surface then “cosntant” = 0 and

z= ;;—rz (The paraboloid of revolution)

At the bottom z = constant
So p=%pm2r2+constant
If p= p, on the axis at the bottom, then

p=py+ % pow s

1.331 When the disc rotates the fuild in contact with, corotates but the fluid in contact with the
walls of the cavity does not rotate. A velocity gradient is then set up leading to viscous forces.
At a distance r from the axis the linear velocity is ® r so there is a velocity gradient
or
h
radial width is dr is

both in the upper and lower clearance. The corresponding force on the clement whose

1 2nrdr E:—r (from the formular F = nA % )

The torque due to this force is
n 2nrdr 3’; r
dnd the net torque considering 20&1 the upper and lower clearance is
2 { 2w dr %
= aRk*on/h
So power developed is

P= nR*o™/h= 9-05 W (on putting the values).
(As instructed end effects i.e. rotation of fluid in the clearance r > R has been neglected.)
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1.332 Let us consider a coaxial cylinder of radius r and thickness dr, then force of friction or

viscous force on this elemental layer, F = in rinm %

This force must be constant from layer to layer so that steady motion may be possible.

of, F-——-—r—d—rv- 23‘[1?‘ dv. (I)
Integrating,
Ff——s 2nlnfdv _— _R_,_,.,,_....,..B-L———éf:é -
&, ° 2
LA
r i
o, Fln (,__) = 2miny &) >
R,
Putting r= Ry, we get
R,
Fin "R"Z' = 2n “1 Vo
From {2) by (3) we get,
Inr/R,
Y= Y IWR R,

Note : The force F is supplied by the agency which tries to carry the inner cylinder with
velocity vy -

1.333 (a) Letus consider an elemental cylinder of radius 7 and thickness dr then from Newton’s
formuia

dw 5 dw
Fw2nrinr o= 2rlnr o

and moment of this force acting on the element,

N= 2nr21n~3~—r-= z::Pt-q -

or, 2nlqdm=Nfi;; 2)

As in the previous problem N is constant when
conditions are steady

Integrating, 2nrilm f do=N | -
N1l 1

LAY S - 3

or, 2rinw Z[Ri rz} 3
Putting r=R; w= m,, we get

2nina,= N[I:z 1:2] “)
2
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From (3) and (4),

o= 0, 2 -4
R,-R:IR: /A
(t) From Eq. (4),
RiR;
RI-R?
1334 (a) Let dV be the volume flowing per second through the cylindrical shell of thickness
dr then,

N= #«»w 4nmnw,

dv 2ard 152“ 2 id
= ~(2nrdr)v, “Rzﬂ nv, r-—R2 r

and the total volume,
R

3 2
V= 2:waf (r-—i-i)dr- va{,%—- g—RZVO

{b) Let, dF be the Kinetic energy, within the above cylindrical shell. Then
dT = %(M) W %(mrldrp) 2
| r 27 P
= :-Z-O.'st! p)rdrvf,(l ~-§5—)- nlpvoir—;;a-;{}dr
Hence, total encrgy of the fluid,
R

3P AR piv:

2 r r Pivy

Txnlpvaf(r-——2+“4)dr-m6
0

(c) Here frictional force is the shearing force on the tube, exerted by the fluid, which

equals —nS‘;—r.
2
Given, v= vy (1 -Ei
dv r
So, 3?‘—2%}7
2,
And at reg, & _Zh
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1.335

1.336

1.337

Then, viscous force is given by, F» ~n {(2n R} (%)
r=R

2v,
= -2nrRnl -3k 4nnv,l

(d) Taking a cylindrical shell of thickness dr and radius r viscous force,
dv
Fu-n@rr)—

Let Ap be the pressure difference, then net force on the clement = Ap x P+2 nnlr %:—

But, since the flow is steady, F_, = 0

L

_2,.;},],-.3; ~2xl nr(“zv"ﬁ)

0, E ] - "4 I/Rz
T, A}’ ﬂrz ﬂrz Nvy

The loss of pressure head in travelling a distance [ is seen from the middle section to be
hy~ hy= 10 cm. Since h, - hy = h; in our problem and h; -y =15cm =5+ hy - by,
we see that a pressure head of 5 cm remains incompensated and must be converted into
kinetic energy, the liguid flowing out. Thus

sz-= pgAh where Ah= hy— I,

Thus vy 2gAh = 1 m/s

We know that, Reynold’s number (R,) is defined as, R, = pvi/7, where v is the velocity

[ is the characteristic length and 7} the coefficient of viscosity. In the case of circular cross
section the chracteristic length is the diameter of cross-section d, and v is taken as average
velocity of flow of liguid.

v
Now, R ) (Reynold’s number at x, from the pipe end) = pd vy

h is th i
o where v, is the velocity

at distance x,

d, v, R dv
and similarly, R, = P o Eﬁ-. .&i.;l
' n e, H2V2

From equation of continuity, A, v; = A, v,
or, AV = ey, of dyvyirym dyvary

-ax
divy, r, rge "2

T M

-a Ax
@ (a8 x,—x; = Ax)
dv, n rpe %%

R

] aAx
k] -5
Thus R €

“

We know that Reynold’s number for turbulent flow is greater than that on laminar flow

pvd _ 2ppniny 2 pyvary
L} n

Now, (R})= w and (R,), =
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1.339
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But, (R,), = (R);
- PV
Zoun P2ram

Vp,d

s0 = 5 pm/s on putting the values,

We have R =

and v is given by

4
6anrv=r(p-po)g
{p = density of lead, p, = density of glycerine.)
2 1
ve gnw(w-po)srz- m(P—Po)Sdz

1 1 3
Thus 5= W(P'Po)gpod

and d=[9M%/py(p~pp g} = 52 mm on putting the values.

dv
m—=mg-6anrv

dt
dv 6nnr
or at T V=8
or %-&kvug,k-g—f”—:]—t
pdv e B d n ke
or e a-a»ke v ge” o —me v ge
or ve = %e"‘+C or vm %+Ce'h (where C is const.)
Since v=0fort= 0,0« £sc
So Com _i-
Thus V= ‘i—(i«-e'”)
The steady state velocity is %
v differs from i- by n where e ¥ = n
or [= —1~lnn
k
47£r3
—r P
Thus 1 3 4rzp_ o

k ~—t’:i:rt'r;r% T 18n “1811
We have neglected buoyancy in olive oil.
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1.8 RELATIVISTIC MECHANICS

1.340 From the formula for length contraction
4 / W
(lo‘lo 1"":‘2')"1"0

2
So, 1_:}_2' (1-m)* or v= cV(Z=M)
¢

1.341 (a) In the frame in which the triangle is at rest the space coordinates of the vertices are

Vi 4 Vi o«
(000}, (aﬂi—,i—-z-,(})(a-{',"'z',

frame the corresponding coordinates at time ' are

A=(Vt’,0,0),3:(~;—~f3“\/1—132 +vz’,%,0) and C:(g—ﬁVI——ﬁT+ vt',—‘g‘,{})

0), all measured at the same time 1. In the moving

The perimeter P is then
12
P= a+2a(%{l-f32)+i") = G(I+V4—3B2 )

(b) The coordinates in the first frame are shown at time £. The coordinates in the moving
frame are,

7 N5 % 0)

A >
(O) 0, O) C (a,0,0)

A:(vt’,O,D),B:(g-\/I-BZ e, a2 o), C:(a\/l-ﬁz +vr’,0,0)

2 2
The perimeter P is then

p= aVl-ﬁ2+%[1~ﬁ2+3]mx 2= ¢ (VI-p? +Va-p? ) hore {5%%

1.342 In the rest frame, the coordinates of the ends of the rod in terms of proper length
A :(0,0,0) B: (I cosby, i;sind, , 0)

at time £ In the laboratory frame the coordinates at time (' are

A:(wr,0,0),8: (ID cos, V1~ ﬁ2 +vt', I sin@y, 0)
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1.344

1.345

Therefore we can write,

lcos By = IycosB, V1 - B2 and Isin 0= I;sinf,

.169

2 _p2 -29 B
Hence 13 = (;2)(008 9+§1—B§ ) sin ) “
1- in“ @
on - 1-? A 9

In the frame K in which the cone is at rest the coordinates of A are (0,0,0) and of B are
(h, htan 8, 0). In the frame X, which is moving with velocity v along the axis of the cone,

the coordinates of A and B at time ' arc
A=l 0,0),B:(h Vi —52 - vt', htan O, 0)
Thus the taper angle in the frame K’ is
tan 8 - Yo~ Ya
Vl _ ﬁz ( x’B“x'A)
and the lateral surface area is,
S = 7th'?sechd tand’

-2 -p) 0 V1258 s ViTFesle
Vl-g'*’ 1-§

Here Sy= n h* secB tand is the lateral surface area in the rest frame and
H=8V1-§2, p= v

Because of time dilation, a moving clock reads less time. We write,

r-Arm tVi-g?, fi-ii

2
Thus, 1-3ﬁ+(—§) .1-g

tan 9 =

4 4

or, v-cvéf—(Z-—-é"-)
[4 {

In the frame K the length [ of the rod is related to the time of flight At by
I= v At

In the reference frame fixed to the rod (frame K')the proper length [; of the rod is
given by

L= vA
! . v At B = v
V’l-—Bz \/1_‘32 c

But Iy=
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1.346

1.347

1.348

1.349

Thus, YAF w 2D
Vi-g?
At 2 Ar\2
S L 2‘ —— = - | ——
0 1-8 (At’) or v=¢ 1 (At')

and Io" ({-\[(Nr)Z_(At)Z_CN:-‘/I\_(%)Z

The distance travelled in the laboratory frame of reference is vA r where v is the velocity
of the particie. But by time dilation

A‘G
At= ——— So v cV1 - {Ary/Af)
V1-v2/c? o

Thus the distance traversed is

cAtV1 - (Aty/At)?

(a) If ¢, is the proper life time of the muon the life time in the moving frame is

Ta v 19

—rm=—=——= and hence [m —r—m——u
Vi -/ Vi- v/
Thus T - “‘I:Vl—vg/'cz
(The words "frem the muon’s stand point” are not part of any standard terminology)

In the frame K in which the particles are at rest, their positions are A and B whose
coordinates may be taken as,

A:(0,00),B= (,,0,0)

In the frame K with respect to which K is moving with a velocity v the coordinates of
A and B at time ¢ in the moving frame are

A= (v,0,0)B = (zo\h ~B +wr, o,o), B= i’-

®

Suppose B hits a stationary target in K after
time t'p while A hits it after time 75 + AL Then,

10\11—~f!2+v1’3s vifg+ A1) /A é
vz

IW
0Vl-—vz/c2

In the reference frame fixed to the ruler the rod is moving with a velocity v and suffers
Lorentz contraction. If I, is the proper length of the rod, its measured length will be

Axx'IGVI'ﬁZ:ﬂ‘%

So,
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In the reference frame fixed to the rod the ruler suffers Lorentz contraction and we must
bave

Ax, VI = I thus I, = VA, Ax,
Az,

and 1-—f52-£1-ctrv-----ch«M1
Ax,

The coordinates of the ends of the rods in the frame fixed to the left rod are shown.
The points B and D coincides when
€ -4

Lhwce,~vty, or fy=

The points A and E coincide when

o+, V1-p*
0mc,+, V1-p* —vr,, 1, = athVi-F

v
!
Thus Atstl-tﬁ--f—(I-bVI-ﬁz) A B P {-‘-
-V E,0
i (E“I““ 1) =1-F-1-5 (6o ViT-,00)
] [
22 Al 2L /At
From this iy’ b/

T I EME T Te Uy n)

In K, the rest frame of the particles, the events corresponding to the decay of the particles
are, '
A:(0,0,0,0) and (0,/,, 0,0)= B
In the reference frame K, the comresponding coordintes are by Lorentz transformation
I

0 ,0
_52

A:(0,00,0),B: 0

vl
Vi -p? ’ Vi
Now LVi-g2 =1

by Lorentz Fitzgerald contraction formula. Thus the time lag of the decay time of B is
vl vi vi

AVig T EU-B) A

B decays later (B is the forward particle in the direction of motion)

At =

(a) In the reference frame K with respect to which the rod is moving with velocity v, the
coordinates of A and B are

ArLx, +v(t-1)00

B:t,xg+vit—1,),0,0
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1.353

Thus [= x, —xg-v(t,—t)= [, V1-§°
Xy =Xg=v(t, ~15)

1-v2/c?
) = h=vit,~tg)= [ =, V1 v2/&

(since x, - xg can be either + [, or -1,)

Thus v (t, —tg) = (: I—Vi-vz/cz)lo

i
he. f-tg= -“3—[1*\/1-"—2]

[

{
of fg—1I,™ %,(1+V1-v2/c2)

At the instant the picture is taken the coordintes of A, B,A’, B’ in the rest frame of A B
are

So o=

A:(0,0,0,0) Al B’
B:(0,1,0,0) === > 14
B:(0,0,0,0) eSS
A B
A (0, ~ 4, V1 v/ ,0,0)

In this frame the coordinates of B’ at other times are B': (¢, v, 0, 0). So B’ is opposite to

i
B at time £ (B) = —3. In the frame in which B', A is at rest the time corresponding this

is by Loreniz ranformation.

l, vl !

OBy ——te [2 T2 BT
" v 2 v

1-=

C

Similarly in the rest frame of A, B, te coordinates of A at other times are

t,-IG'Vl—EZ— +vt,{),0)
C

I
A’ is opposite tu A at time £ (A) = »3 1-%
[od

Al

The corresponding time in the frame in which A", B’ are at rest is

lo
A )= yt{A)= =

1.354 By Lorentz transformation ¢’ = — ( - v;)
] <
v

| e
c2
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. Vi
So at time t= 0, ;’..--é-............l...m
V1 -vre?

Ifx>0¢ <0, if x <0, '>0 and we get the diagram given below "in terms of the K~clock”™.

SSCO0NSS
 OOOOOOD®

The situation in terms of the K’ clock is reversed.

Suppose x (#) is the locus of points in the frame K at which the readings of the clocks of
both reference system are permanently identical, then by Lorentz transformation

Y- 1 ‘- sz(t) -t
V1-vi? ¢

2 )
ifferentiati Cli-Vi-L |- S(1-vi-g), = L
So differentiating x () v (l 1 = ) B (1 1-p ) , B p,

Let §=tanhb, 0< G <o, Then
< N Y Y cos ho 1
@ = o5 (1-Vi-uni’e) ‘smhe(i”coshe)

Ccoshﬁwlﬂ o /coshﬁ-l - ctanhg— <y
sinh @ cos hS+1 2

-(tan k O is a monotonically increasing function of 6)

We can take the coordinates of the two eventis to be
A:{0,0,0,0) B:{At,a,0,0)

For B to be the effect and A to be cause we must have Ar > 1:_:1_

In the moving frame the coordinates of A and B become
A:(0,0,0,0),B: [y(mﬁ:—'), y(a-VAt),0,0] where y=
¢

Since

2
a

"2 2
(A:')z-f‘;z—. yzl(m»zav-) _fg(a-vm)z)= (m)z-—z—po

[
a
we must have At > Lc-i
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1357 (a) The four-dimensional interval between A and B (assuming Ay = Az= 0) is :

5%~ 3% = 16 units
Therefore the time interval between these two events in the reference frame in which the
events occurred at the same place is

c(t'B—-t’A)-\/iw.-ﬂtm C't7
or fg-f,m -jj- g——xlﬂ'ss ; 2
(b) The four dimensional interval between 4
A and C is {assuming Ay = Az = {) 3 . ¢
¥ .5t ~16 2
So the distance between the tw;) events in the frame ! A
in which they are simultaneous is 4 wnits =4m. 0~ 17273 4 5 ¢ 7

5

1.358 By the velocity ':;ddition formula

v~V v V1.V

i ¥

vx:l Vv, 0" 1 v,V
< C2

Vi, - VY +V (1 -V/c
and Vo v’i-&v’iu 0, Vv )
. v,V
Jr)

1.359 (a) By definition the velocity of apporach is

dv, dx,
Vapproach = I " ™ vy~ (V)= v+,
in the reference frame K .
(b) The relative velocity is obtained by the transformation law
vy —{=~vy) ViV,
i . v (= vy) - \ vV,
Tt E

1.366 The velocity of one of the rods in the reference frame fixed to the other rod is

Ve vy 2v
WV 1+§:
1+Z§"

The length of the moving rod in this frame is

1/ av2/ct 1 -8
=V ITEEy T e

1.361 The approach velocity is defined by

- dr; dry
Vawasn= 7~ = i V2

in the laboratory frame. So V.0 = Vvi + vg
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On the other hand, the relative velocity can be obtained by using the velocity addition
formula and has the components

“/ v, v

1 1Y2

-V, Vy l-—(2 so V.= Vilsiie 5
c c

The components of the velocity of the unstable particle in the frame K are

vV, v V 1 - ,G)
( c2

1
so the velocity relative to K is y

2472
z. .2 vV
VV v -

c
The life time in this frame dilates to

V2 v12 vr2 V2 A I

62 c

and the distance traversed is
A Ve (v V) /&
0\/1 —--Vz/c2 Vi ---v';”/c2

In the frame K' the compenents of the velocity of the particle are
o _Veos -V

* vVcos @
1T ® @
. vsin0V1 -V
Yy = vV —>V
1-7cos® .
¢ v
v i
Hence, an®’ = —£= __!ﬂ{l_ﬁ__v(l -Vy/e? 8
vV, vcosB-V >

In K' the coordinates of A and B are
A (0,0, -V, 0B (/L -v1,0
After performing Lorentz transformation to the frame K we get

Att=vy{ Bit= Y(I'-?Z;‘)
C

x=yVe x=y{I+ V1)
Ay
y‘ vfrf y'_vl'tl
z= 0 z=90

; Vi .
By translating £ — ' — —5, we can write
c

the coordinates of B as Bit= y/
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1.365

— o |® ®
Thus Avs= | 1_(——) , Ay= —
P C
Hence tann 9 — A A— -—}1}
3 vV
¢ -3 Al
c
t I +dr ® 41}{ B
v Ve wdt

In K the velocities at time £ and 1 + df are respectively v and v + wdr along x — axis which

is parailel to the vector V In the frame K’ moving with velocity V with respect to K, the

velocities are respectively,

vV vewdt-V
s and Vv
1 o e I1-{v+wds
2 Wrwdda
The latter velocity is written as
W
wdt(l“—f)
v-V o wdt v~V wV.,  v-V ‘
V V v cz V 2
b~v—s 1-v 1 e e 1-v— vy
¢ & ( c‘:) ¢ (1_5‘2,)

Also by Lorentz transformation
dt-Vdr/c & L= v/c?
V1-V/e? Vi-V/e

Thus the accelieration in the K' frame is

dt’ =

{6) In the X frame the velocities of the particle at the time ¢ and 1+ 41 are repectively
(0, v, 0) and {0, v + wdt, 0)

i
where V is along x-axis. In the K' frame the velocities are

(-—V,vVl«Va/cz,O)

and (-- V,(v+wd) V1 - Vet s O) respectively
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Thus the acceleration

. wdtV(1- F/ci) | .
L 7 = w|l--=| slong the y-axis.

¢
We have used dt' = —

V1-v/¢?

In the instantancous rest frame v= V and
W s e (from 1.3652)

.2
So, - dvz = Wt
v
| s
( cz 4
w’ is constant by assumption. Thus integration gives
w't
Vo

1+ (__w’_i)z
<
r 2
Integrating once again x = fw“z;- ( 1+ (_;y;}:) - 1)

The boost time 1, in the reference frame fixed to the rocket is related to the time t elapsed

on the earth by
x L1 12

dt ¢ dE c ' (w"e)z
= - - m - n 4 ¥ 14—
f o 0\2 w 1488 W ¢ €
g
€
My
m=
Vi-g
For f~1 -@-.ml -WSI
’mo - n

We define the density p in the frame K in such 8 way that p dedydz is the rest mass
dmy, of the element. That is p dx dy dz= p, dx,dy, dz, , where py is the proper density

dx,, dy,, dz, ate the dimensions of the element in the rest frame K Now

dy = dy,, dz= dz;, dcw dxy 1_,.”,25
[
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if the frame K is moving with velocity, v relative to the frame K. Thus

Po
Y
v
1____
C2
Defining 1 by p= py(1 +n)
i v 1 n{Z+n
Weget 1+vje — 2 o, 5= 1-
® " R TR (R
1_..__
&
or v-c\/“(2+11) c'\/‘q(2+q)
(1+m) 1+n

1.376 We have

) 1/ 2
= p o1, -————-—Tg———u m%+E‘5
[

myv
Vi3 Vi-y

v m? ¢ P
or log= = 1~
¢ mgct+p Prrmyc
,
or
Vp +m ,\/ mocz
i#f——
-1
2 - c2
- m,c
So £Xa 1-(1+(——9——) ) x1m%.l( 0 )xlOO%
c P 2y p
1371 By definition of 7,
my v 2 1

=fmyv or 1t =
0 2 2

©on
Vi-g
[4
or v-chl»%-%Vnz—l
n

1.372 The work done is equal to change in kinetic encrgy which is different in the two cases
Classically ie. in nonrelativistic mechanics, the change in kinetic energy is

-lz-m,, (087 - 067 )=~2—ch 0-28 = 0-14 m, ¢
Relativistically it is, -
my ¢ mg ¢ myct  my

- - - - 2 (1-666 - 1-250
Vieosy Vi-@ep 06 08 "¢ ( ‘

= 0416 my ¢* = 0-42my*
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2
ver o1

or 1_,,-.......-...... or 1_,.,......-'
Rl )

v
or -
[

Relativistically

2
myc

VEl R

But Classically, 8= 2T2 50 f3""1-—&':1- 3.1 5
mD [+ Bc[ 4 mO o

2 2T ?_(ﬂz )2,_ J—.Z.,,%(ﬂ_)

= £

4
<-E

Hence if
myc 3

the velocity P is given by the classical Yormula with an error less than €.

From the fonmula
/ 5 ;1 v /’c
we find E*=¢ p +m ¢t or (mec +T) = czpz-i-mgc‘

or T(2m0c2+1)=c2p2 ie. p=:1:—VT(2moc2+T)

Let the total force exerted by the beam on the target surface be F and the power liberated
there be P. Then, using the result of the previous probiem we see

F=Np= i—:r—\/r(n g ) = ;Ic- VT T+ 2my )
since I = Ne, N being the number of particles striking the target per second. Also,
N : T
1-v/é €

These will be, respectively, equal to the pressure and power developed per unit area of
the target if [ is current density.

2
my ¢
P= N(-~-~~-—-~-~-q-~--~--~~~~«»muc2 =
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1.377 In the frame fixed to the sphere ;- The momentum transferred to the eastically scatterred

particle is
2 my
v
1 —r——
2
The density of the moving element is, from 1.369, n !
2
1-%
C
and the momentum transferred per unit time per unit area is
Zmv i 2mn v’
p= the pressure &= ————- n SRV 3
2 Y.
Vi. 1’22— Vi. % 1-3
[+ [

In the frame fixed to the gas :- When the sphere hits a stationary particle, the latter recoils
with a velocity

v+ 2v
1+v 1+V
& &
m2v
The momentum transferred is 1rv/e -2 m‘;
/et 1-5
a- Vet }2 c
., 2my 2 mnv*
and the pressure is ———y " fi* V= comep.
v v
1~ 1-
2 ¢
1.378 The equation of motion is
d myv
s | eerrmersareeerremeene € it F
dt
)
¢

Integrating = , using v= 0 for t= 0

vie 8 - F,
ViZ ViR e
-z
i (._EL._ ) o B

1,.|32‘ myc

2 Fet

-y -
FER+moe? " Vimger 4 FF
VFF s mg ¢* + constant

or 1= Fetdt ¢ EdE ¢
W F Ez‘i-(m,,a':)2 F

' s 2 [mpcV n%cz
or using x= 0 at t= 0, we get, x= ot + T - TF
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- 2
ETT . 't
1.379 x= a+r:t2,so Xw y=
a +c't
2 2
v my v myc
or, ¥l gy ATt ) Tl
2 a dt P a
v v
I-“““i‘ 1...-“5
€ <
- .
- df myv v Vo 1
1380 F. — 2 = m, My ViV
de 0 0 2 ¥
v2 v2 c v2
1-= 1--5 1-=
< < [
——p
e w M
Thus F, VW

Fy= "’0(1 a2 |
1.381 By definition,
c* myc dt Ve ¢ mydx
E = g 5 = ds y Pe™ My = ds
1 V. %
2 2

where ds* = ¢*di - dx’ is the invariant interval (dy = dz= 0)
d’ (dc- Vi) Py~ VE/S
Cmy Y St

Thus, P' w O,
* o Vi-viet
(d: _vd,

ds
cz) E-Vp, |

' st
E'=m;c z;—csmey A -
\/lw_wi
e

1.382 For a photon moving in the x direction
E=Cp,, P,= P, = 0,

ey 1. 1-B 3 yo3e
Note that £ 2:1",4 Y or B S,V 5
1.383 As before
Eemd® -
g € dsr.px (1] ds'
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_— d dz
Similarly py= m,)c;'}, pe= mpc o
Then Ez-czpzuEzucz(p:-fpi-l-pi)

mgcq,(czdtz—dxz— a‘yz-dzz) 2 4

= m; ¢ is invariant
] 1]
ds’

1384 (b) & (a) In the CM frame, the total momentum is zero, Thus
V. o Py VIT+2myc’ /
€ E1+Ez T+2m(,c T+2mc

where we have used the result of probiem (1.375)

Then
1 1 T+ 2m0c2
Vi-vE L f T 2my c?
1 n T———
T+ Zrnoc2

. Total energy in the CM frame is

QJnoc T+2m ¢ 5
V =V 2myc* (T+2myc®) = T+2myc?

Vi-Vi

So T= 2my c* \/1.,.__1:__5,.1
2myc

Also 2V PP amict « Vamg T4 2myc?) , 4625 = 2my T, or p=y/ %MOT
1385y 2 VE A7

VOmy P+ TP =T @mo +T) = V2mg & @y + 1) = cV2my Qg + T)

Also paVITe2myc) , v —E- eV —L

T+2m, c
1.386 Let T = kinetic energy of a proton striking another sationary particle of the same rest
mass. Then, combined kinetic energy in the CM frame

r 2 L
-Zmocz[ 14—+ -1)-2T, (—7:—5+1]=1+ L
. g ¢

2m, & 2my e

7' T@myc*+ 1) T, 2T(T +2m,¢*)

» LT
2m, e my ¢t my ¢
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1.387 We have
E +Ey+ Eym myc?, pr+py+ps= 0

Hence (m, &2 E;)z - Czﬁ? = (£, + Ea}z - (I;;"”I;; )2 ¢

The LHS. = (mic*~E) -5 = (mk+md)c*-2myPE,

The R.H.S. is an invariant. We can evaluate it in any frame. Choose the CM frame of the
particles 2 and 3.

In this frame RELS. = (B +E'5)? = (my4 my)*c*

Thus  (m3+mi)c* ~2my P E, = {my, + m)* ¢*

y 2 2, .2 2] 4 nig + mi - (my + my)?
or 2myc'Es {mg+m1-—(m2+m3) }c , o By =

Zm,
1.388 The velocity of ejected gases is u realtive to the rocket. In an earth centred frame it is
v—u
Vil
1-—

[
in the direction of the rocket. The momentum conservation equation then reads

(m+dm)(vedv)+ vou (-dm)- my
1-

or mdy ~

Here - dm is the mass of the e;ected gases. 50

-y 2
My - ———— dm = 0, or mdv+u(1—‘—’~2~)dm= 0
[

uy
| st
CZ

v
(neglecting 1 - — since u is non- relativistic.)

. v u
Integrating (ﬁa c)’ f - 0, in i 5 p Inm = constant
The constant = *Inmy since B = 0 initialy.
w'e
m
we L
1-g_(m ™o
Thus T+p = ("’o) or B w/e



PART TWO

THERMODYNAMICS AND MOLECULAR PHYSICS

2.1 EQUATION OF THE GAS STATE * PROCESSES

2.1

22

Let mr, and m; be the masses of the gas in the vesscl before and after the gas is released.
Hence mass of the gas released,

Am o= m, - m,
Now from ideal gas equation

R R
V= mlHTO and p, V= mzﬁ'fo

as V and T are same before and after the release of the gas,

R R
50, @,-p) V= (mi—mz)M—T0= Am——M—TO
P1-P VM  ApVM
or, Am = - (1)
RT, RT,
R M p
We also know p= p—T s0, === Lo 2

(where po= standard atmospberic pressure and T = 273 K)
From Eqs. (1) and (2) we get

am=p Vo 13302781 304
Py 1

Let m,; be the mass of the gas enclosed.
Then, pV=vRT

When heated, some gas, passes into the evacuated vessel till préssure difference becomes
Ap. Let p’, and p', be the pressure on the two sides of the valve. Then
P, V=vRT, and

poV=v,RT,= {v;-Vv)RT,
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But, Py-ph=Ap

So, P (% - Iig‘;fﬁ)T 2
%’;{g‘ ~py-Ap

or, Py o= % (%? - Ap] = (08 atm

Let the mixture contain v, and v, moles of B, and H, respectively. If molecular weights
of H, and H_ are M1 and M,, then respective masses in the mixture are equal to
my= v, M, and my,= v, M,
Therefore, for the total mass of the mixture we get,
mwp+m, of m= v, M +v, M, 1
Also, if v is the total number of moles of the mixture in the vessels, then we know,
VvV, (2)

Solving (1) and (2) for v; and v,, we get,

('VMz"m) n - VM}.
it oM, 0 T MM,
(vM,-m) {m-v M)

Thﬁfefﬂre, we get ml b Ml - W iﬂld m: - Mzm

m M, (vM,-m)
o mz M’2 (m-vM)

One can also express the above result in terms of the effective molecular weight M of the
mixture, defined as,

m RT
Me Vscmpv

™ m M, My-M 1-M/M,
us m, M, M-M, M/M -1

Using the data and table, we get :

m,
M= 30g and, —= 0-50
my
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2.4 'We know, for the mixture, N, and CO, (being regarded as ideal gases, their mixture too

2.5

behaves like an ideal gas)
pV=vRI, so p,V= vRT

where, v is the total number of moles of the gases (mixture) present and V is the volume
of the vessel. If v, and v, are number of moles of N, and CO, respectively present in

the mixture, then
Ve VitV
Now number of moles of N, and CO, is, by definition, given by
my e
v, = H-;— and, vy= Mw;
where, m, is the mass of N, (Moleculer weight = M) in the mixture and m, is the mass
of CO., (Molecular weight = M) in the mixture.
Therefore density of the mixture is given by
mi+m, m+m,
P= "V~ wRI/P)

p0 mi-i-m2 Dolm +m)M, M,
" RT v+, RT(m1M2+m2 M)

= 15 kg/m> on substitution

(a) The mixture contains v;,'v, and v; moles of Oy, N, and CO, respectively. Then the
total number of moles of the mixture
V= Vi EVy vy

We know, ideal gas equation for the mixture

pV=vRT or p= YRT
v
(vy+ v, +v)RT o
or, p= —————= 1968 atm on substitution

1%

(b} Mass of oxygen (O,) present in the mixture : m; = v, M)
Mass of nitrogen (N} present in the mixture : m, = v, M,

. Mass of carbon dioxide (CO,) present in the mixture : my = v3 M,

So, mass of the mixture
memymy+my= v M v Mo+ v, M,

mass of the mixture

Moleculer mass of the mixture : M =
fotal number of moles

v M+ vy My vy My o
s Bt 36T g/mol. on substitution
Vl + ’Vz + VS
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Let p, and p, be the pressure in the upper and jower part of the cylinder respectively at
temperature T, At the equilibrium position for the piston :

Py S+mgm p,S or, p + %5_, Py (m is the mass of the piston.)

RT
But p;, = "ﬁ“ﬁ% (where V; is the initial volume of the lower part)

RT, RT, RT,
So, Zle Mg o or, ZE.220 1.1 (L
nw, § V S ki

Let T be the sought temperature and at this temperature the volume of the lower part
becomes V', then according to the probiem the volume of the upper part becomes n' V'

Hence, %& = %,I (1 - #) {2)

From (1) and (2).

Vol m)T WV

RT, Te(l"%f)v
) -

As, the total volume must be constant,

Vo(l+m)
Vo{l+n)= V{i+yw) o, Vo —rur
Putting the value of V' in Eq. (3), we get

Bt -g%ah

T" Y
1
bolt-3]

- Tu(nz"l)“'
m*-1mn

= 42k K

Let p, be the density after the first stroke. The the mass remains constant

- R 4
Vp (V+ AV} 91 s Of, p,l (V‘i‘ AV)
Similarly, if p, is the density after second stroke

2

v Vv
Vo= (V+aV)p, on py= (V+AV) Py = (va) Po
In this way after nth stroke,

n

- \4
P Va+ AV Po

Since pressure o density,
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28

29

n

v .
P, = (W) Py (because temperature is constant)

It is required by L to be 1
P n

0 LV Y L (Veary
’ n V+AV L
Hence "o oy

AV
in(1+ v )

From the ideal gas equation p = ﬁ-%

dp  RT dm

dt MV dt

In each stroke, volume v of the gas is ¢jected, where v is given by

Vv =t M m

s -

m Nl N]
N[

)

In case of continuous ejection, if {m, _,) corresponds to mass of gas in the vessel at time

t, then m, is the mass at time ¢ + Ar, where Af, is the time in which volume v of the gas

. N L
has come out. The rate of evacuation is therefore - i.e.

At
c=Y. . Vv m e+ Af) ~ mit)
At m (¢ + Ar) At
In the limit Ar - 0, we get
V dm
Ce =22
m dt
From (1) and (2)
dp_ _CmRT = C P__<
PRV 72 S at

#y 0
i o _ _C f p._¢C
Integrating f P v dt or I P Vr
P t

—Fhus p =poe—6’n’V

@

Let p be the instantancous density, then instantancous mass = V. In a short interval df

the volume is increased by Cdr.
So, ’ Vp=(V+Odr) (p+dp)
(because mass remains constant in a short interval df)
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21

@ _C
80, o Vd:
Since pressure o density @_ . —C-dt
r v
dp C
o f PV
2y
Y P _v,o1.oo
or t=clnp2 Cln 1-0 min
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The physical system consists of one mole of gas confined in the smooth vertical tbe. Let
m, and m, be the masses of upper and lower pistons and §; and 5, are their respective

areas.
For the Jower piston

Py +myg= pyS; + 1T, v B
/]
o, T= {p-pS,+mg (1) ; D L
Similarly for the upper piston //0 i
PoSi+T+mg=ps,, A YT 2
14
or, T=(p-py)S;~mg 2 " ?
A AT “
From (1) and (2) ] 7
(P"Pg)(si"sz)' (m1+m2)3 g /% 2
or, (p-p)AS=mg 4 ¢

m
so, p= ng- +py = constant

From the gas law, pV=vRT
PAV= vRAT (because p is constant)

So, (po«b%)%SIzRAT,
Hence, AT-%(pOAS+mg)i- 09K

2
R
(@ p=py-aV’= po-a(;,z)
(as, V= RT/p for one mole of gas)

H | A R
Thus, T= RVaPYPe~P = pig VPP P
23
PP —P
For T, —d—( ¢ ) must be zero

dp

)
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2.12

2.13

which yields, P=xPo
1.2, 4 / 2 2 (Pol+ /Py
H ot 2 PR ¥ CA A VA
ence,  Tom= 2= 3P0 VPem 3P0 = 3 (R) 3a
®) p=poe ?’ = pye P
50 wa}n&, andT-«E-—]n}—,g
p p BR  p
For T, the condition is P 0, which yields
Po
! S
Hence using this value of p in Eq. (1), we get
P
Toowx = eBoR

2 2
T=T+aVla T°+a—R-§:——
P

(as, V= RT/p for one mole of gas)

So, p= Vo RTT-T)Y?
For Poin » g% = (), which gives

TwmlT,
From (1) and {2), we get,
Poia™ V& R2T, 2Ty - Tp) "2 = 2RVG T,

&)

®

®)

@

Consider a thin layer at a height & and thickness dh. Let p and dp + p be the pressure on
the two sides of the layer. The mass of the layer is Sdhp. Equating vertical downward

force to the mpward force acting on the layer.
Sdhpg+{p+dp)S=pS

/2
So. =P8 ) L l(?ﬂfp)s
A
But, p= £RT, wehavedp= EXar, ]
M M d P,
ﬂ ' 1? S hg S5
o, -7 dl= pgdh l
ar _ _gM _ _
So, Sr= -EFe -34K/km

_'That means, temperature of air drops by 34°C at a height of 1 km above bottom.
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2.14 'We have, £.. pg (Sec 2.13)

.15

2.16

dh

But, from p= Cp”" (where C is, a const) g%- Cnp*!

We have from gas low p=p j; T, so using (2)

Cp"-p T, or J"mECp""'1

M R
ar M -2
Thus, el y Cr=-1p"
dT dar dp dp
But, dh= de dp dh
ar_ M -z 1 ~Mg{n-1)
So, - rC@m-1p —————Cnp,-l(mpg)= R
M
We have, dp = - p g dh and from gas law p = RT P
. _Mg
Thus 7 RT dh
Integrating, we get
A
or, f gﬁa -—ng- dh or, in‘v"-a —m-&h
P RT Py
o

(where p; is the pressure at the surface of the Earth))

- M gh/RT

p=pye T,

{Under standard condition, p,= 1atm, T= 273K
r

Pressure at a height of 5 atm = 1 x ¢~ 2 *¥81x00BNLAB L 4.5 aim.

Pressure in a mine at a depth of 5 km = 1 x ¢~ 2 *%81 x(-3000V8314x2B _ 9 4im.]

We have dp = — pgdh but from gas law p= ﬁ-RT,

Thus dp = %RT at const. temperature
..P_ gM
So, RT dh

b
Integrating within hmnsf EI_E,, f Mdh
P RT
0

Py

191

)
@

&)}

M
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e, _gM
or, In - RTh
- RT
So, pm= pye MR gng po i in £
0 Mg p,

{a) Given T= 273°K, -%G- e

RT3
Th h = -1 - .
us Mg ne Bkm

) T = 273K and

PP . 001 or £ u 099
Py Po
Thus h=- % In f— = (.09 km on substitution
il
2.17 From the Barometric formula, we have
P=p o~ Mg h/RT
and from gas law pm %Mf

So, at constant temperature from these two Eqs.

Mp, o~ MEWRT

- - Mg k/RT
P= = @)

] pae

Eq. (1) shows that density varies with heigbt in the same manner as pressure. Let us
consider the mass element of the gas contained in the cofimn.

M
dm = p(Sdh) = “R? e M WRT g

Hence the sought mass,
A

m=

MpGSf - Mg h/RT PyS - Mg h/RT
=) ¢ dh = s (L-e )

o

2.18 As the gravitational field is constant the centre of gravity and the centre of mass are same.
The location of C.M.

0

fhdm fhpdk
. -l

[

] ]

But from Barometric formula and gas law p= p, e MERET
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o

fh (e“”"‘”") dh

SO, howe e ——

©
=
~

(a) We know that the variation of pressure with height of a fluid is given by :
dp= ~pgdh

M

But from gas law p= f{-RT o, p=or

From: these two Eqgs.

RT
or dp __-Mgdh
’ 7 RI{(1-al)
2 L
, dp  -Mg f dh
Integrating, f 3 ol T, G- ahy we get
Py 0
mZ = Il ~an)M 0
Py
Hence, p=py(l- ak) M5/, Obvionsly h < -(-11-»

(b} Proceed up to Eq. (1) of part (2), and then put T = T, {1 + a &) and proceed further
in the same fashion to get

Py
P PRERN 7 7y
P= AT ey,

Let us consider the mass element of the gas
(thin layer) in the cylinder at a distance r from A0
its open end as shown in the figure.

Using Newton’s second law for the clement R

-y

F, = mw_ :

(p+dp)S~pS= (der)wzr

M
dp = 2 = 2 2
o, dp=pwrdr T rdr
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4 r
dp Mo’ f dp Mo’ f
So, P T rdr or, P = X7 rdr,
A ¢
2
p_Mo » o M P 2RT
Thus, lnpa SERFT O P=Poe
2.21 For an ideal gas law
p=RT
500
So, 2= 0082 x 300 x aa atms = 279-5 atmosphere

For Vander Waal gas Eq.

(P_,:.‘ég.)(v._vb)- vRI, where V = vV,

vRT av® mRT/M am?

PrvEETYET T T TV
M
- RRT .._E_
= Mo ob 3 792 atm
RT a RT
222 (@) p= |5 -5 (L) = =
( [Vu -b V2 Vi
(The pressure is less for a Vander Waal gas than for an ideal gas)
a(l+m) e NVytb
or, V2 RTj— Vu Vosb =RT WVM )

a(l+n)(V,-b)
" RV, nV, +b)

or, , (here V, is the molar volume.)
o 135 x 11 x (1~ 0039)
0082 x (0-139)
(b) The corresponding pressure is
RT a a{l+n) a
P BV VeV BV

125K

M

{VM+nVM N Vy-b) __q__(Vu“b)
. VM (nVy,+b) Vﬁ. (Vy+b)
‘135 0-961 =93 atm

1 0139



1 a
2.23}’1 RT *",——B"*"‘;E,PZ‘ RTZ—‘}-‘-_-"E—-‘-;Q‘

2.24

2.28

R(T,-T))
So, PP
R(T,-T. R(T,~T.
or, V—b-_m or, b= V.._&__l)
PP PPy
PomPy a
Also, py= T, w——r -7, v%
a _ T, {p, - py) —p, = nLip,-n T,
v h-T; ! I,-T
Ip;-p, T
R R L I A ek
or, a=V —Tz"Tz

Using T,= 300K, p, = Qatms, T, = 350K, p, = 110 atm, V= 0:250 litre

a= 1-87 atm. litre*/mole?, b= 0-045 litre/mole

RT a (3p\ RIV 2a
Vwbnm_v(aV) V-byp V%

o R ¥ 14
: vV \ap),

[R'I'V3 2a (V- b)21 . Vvi(v-b)

VZ(V- by [RTVS-M(V-—b)Z]
For an ideal gas x, = Y
4 [+ RT
W-bP [ 2av-5?] by 1
- V- 2a
Now K'W{lu RTV? } =K"(}'“.V) {I-RTV(i_V) }
2b  2a . .
= xﬂ{l— v +RTV} to leading order in a, b
. 2a 2b a
Now K>k, if Ww-‘}- or T<~5§-

195

If 4, b do not vary much with temperature, then the effect at high temperature is clearly

determined by b and its effect is repulsive so compressibility is less.
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2.2 THE FIRST LAW OF THERMODYNAMICS. HEAT CAPACITY

2.26 Imtemal energy of air, treating as an ideal gas
m

m R V
UBMC"T“Mp-IT“y—l (1)
- ; S
Using C‘,m;“:*i-, since C, - Cy = R and Cvzy

Thus at constant pressure U = constant, because e volume of the room is a constant.

Puting the value of p=p,_ and V in Eq. (1), we get I/ = 10 MJ.

2.27 From energy conservation

U, + 30M)F = U

or, AU = 2vM )
But from U = v-ﬁ%—, AU = % AT {(from the previous problem) (2)
Hence from Eqgs. (1) and (2).

AT = MY 2(RI - 1)

2.28 On opening the valve, the air will flow from the vessel at heigher pressure to the vessel
at lower pressure till both vessels have the same air pressure, If this air pressure is p, the
total volume of the air in the two vessels will be (V, + V,). Also if v, and v, be the

number of moles of air initially in the two vessels, we have

piVy= v RT| and p,V, = v, RT, (1)
After the air is mixed up, the total number of moles are (v, +v,) and the mixture is at
temperature T.

Hence pVi+ V)= (v + v)RT 2)

Let us look at the two portions of air as one single system. Since this system is contained
int a thermally insulated vessel, no heat exchange is involved in the process. That is, total
heat transfer for the combined system Q= 0

Moreover, this combined system docs not perform mechanical work either. The walls of
the containers are rigid and therc are no pistons eic to be pushed, looking at the total
system, we know A = (,

Hence, internal energy of the combined system does not change in the process, Initially
energy of the combined system is equal to the sum of internal energies of the two portions
of air :

v RT, w,RT,
§ iz
y-~1 y~-1

U=U+Up= €)
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Final internal energy of (n; + n,) moles of air at temperature T is given by
(v +v)RT

Uf = Y- 1 (4)
Therefore, U; = U, implies :
- ViTz*“’zTZ* VgV, -TT nVi+p Vs,
VitV e VT + 0, VYT P ip VTV,
From (2), therefore, final pressure is given by :
VitV, R pViepV,
Py M= gy, =5

This process in an example of free adiabatic expansion of ideal gas.

By the first law of thermodynamics,
O=AU+A
Here A = 0, as the volume remains constant,

vR
So, @=AU= y-1AT
From gas law, P V=vRT,
P VAT
So, AU= ———c=-025K
To(Y"l)

Hence amount of heat lost = - AU = 0.25 kKJ

By the first law of thermodynamics @ = AU+ A
Bui AU = Ewé---n
y-1 y-1

A A 14
—TrA I—Yd Taogx2= 7]

{as p is constant)

Q*.}r

Under iscbaric process A = pAV= RAT(as v= 1} = 0-6kJ
From the first law of thermodynamics
AU= Q-A= Q~-RAT= 1Kk]

T for v= 1
RAT 0
y-1 o 1" QTRATT

Again increment in internal energy AU = ?AT

Thus g~RAT= 16
Let v = 2 moles of the gas. In the first phase, under isochoric process, A, = 0, therefore

from gas law if pressure is reduced n times so that femperature i.e. new temperature
becomes Ty/n.

Now from first law of thermodynamics

vRAT
0, = AU, = —
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vk (T, vRT (1~ n)
- r.?(';:* e) T
During the second phase (under isobaric process),
A,= pAV= vRAT
Thus from first law of thermodynamics :
vRAT

Qo= AU+ Ay m T-1 + vRAT
TO
VRITo==C1Y AT, (n- 1)y
y-1 Con{y-1)

Hence the total amount of heat absorbed
VRT;(1-n) vRT (n-1)y

€=+ 2" 0T P TRG D
YRT;{n-1)y 1
W(-li—‘y)— V.RTD(I-:;)

2.33 Total no. of moles of the mixture v = v, + v,

At a certain temperature, Um U; + U; or vCym= v, Cy +v, Gy
i

LR R
V1CV1+V2CVZ tym1 -1

Thus Cym ” ™ "
v,C, +v,C
Similarly Cpm — 222
Y R Y, R
it ey
vivy C1,,,1 + Vs Yy C",rz Y1 Y2
= v = v
Y1 ¥z
c v171“1R+V2Y2“1R
Thus ¥= -C-‘ﬂ-.
ooy +Vv
1,Y -1 2.?2_1

. Vi (- +v 1,01~ 1)
vi{ta=1D+v(y -1}

LY Trom e previous problem

Ly =17 Py, -1
Cy= h 2 = 1523/ mole. X
V1+V1
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v ————YIR +v 7R
by, =17 2y,-1
and c,- —H 2T 2385 1/mote. K
‘Vi + VZ
. Total mass 20+ 7
N i f bl L -
ow molar mass of the mixture (M) ool womber of meles™ T71 36
NS
2 4
o 5,
Hence =N 0-42J/g K and ¢, = M 0661/gK

2.35 Let S be the area of the piston and F be the force exerted by the external agent.
Then, F+p8= p,S (Fig.) at an arbitrary instant of time. Here p is the pressure at the
instant the volume is V. (Initiaily the pressure inside is py)
LA

A (Work done by the agent)= fF dy

VD
nv, nv, F
- f @o-ps-ae= [ @o-prav sl ||
Y 4 ‘[
nv, ny, FS V
=P{)(V]"'1)V0*fpdV=p0(?}~—l)Vu~fVRT'd"‘;V"
¥, ¥,

-4 -4

= M-1}p, Vy-nRT lIny= (n -/I)VRT«VRT inn
=vRT(n-1-Inn)= RT (n~ 1 ~Inn)(For v= 1 mole)
2.36 Let the agent move the piston to the right by‘ x. In equilibirium position,
P1SHF = P, S, O Fagm = {p,~py) 35
Work done by the agent in an infinitesmal change dx is
Fogens X = Py = py) Sdx = (py ~py) dV
By applying pV' = constant, for the two parts,
D1 (Vo + Sx)= p, V, and p, (V- Sx) = p, V)

P Vo2Sx  2p Wy V
= where Sx =
vi-si2 Vv "

So, Pr=Py=

When the volume of the Jeft end is ) times the volume of the right end

Vot V)= Vo=V, on, V=1

+1V°
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v

2p, Vo, V
w=forpsave [0V g v 02-vH]
0 0 VO °

-V?
- mpovo[m(vgﬁvz)wznvg]

- mpovo[in{vg-(—"‘l—‘—%)vg}umvg]
"

+1
- _41 Y. m+1)
Pova(ln(mi)z] PoVoln Ty

2.37 In the isothermal process, heat wransfer to the gas is given by

o, -vRTGln -VRT Inn Forns-y-"’---g—1
| A vV, P
In the isochoric process, A= O

Thus heat transfer to the gas is given by

vR R
Q,= AU= vCy AT = Y_IAT (for Cym m)

P, T Py Ps
But —m o of, Tw Ty—=mT, for ny=
n T P " °( " Pz)
vR
or, AlenTy-Ty= (n-1)T; so, O,= -Y-:—l—-(n-l}To

Thus, net heat transfer to the gas

Om vRTﬂlnn«i-?‘—d—?—l--(n-l)Ta

L . N1 L gzt
of, VRT, = Inn+ yo1’ or, “RT, Inn yo1
n-1 6-1
or, - 14 =1+ - 14
(IS I TS I
VRT, 3x8314x273

2.38 (a) From idcal gas law p = (lvl-{-) T= kT {where k= xg-

For isochoric process, obviously k= constant, thus p = kT, represents a straight line passing
through the origin and its slope becomes &,

For isobaric process p = constant, thus on p - T curve, it is a horizontal straight line parallel
to T - axis, if T is along horizontal (or x ~ axis)

For isothermal process, T = constant, thus on p -~ T curve, it represents a vertical straight
line if T is taken along horizontal {or x - axis)

For adiabatic process T'p'~" = constant

After diffrentiating, we get (L-y)p 'dp-T" +yp -t pr-tigr=0
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- (25) (o)) ()

The approximate plots of isochoric, isobaric, isothermal, and adiabatic processess are drawn
in the answersheet.
(b) As p is not considered as variable, we have from ideal gas law

ve oo v rlwhere k= &
P P

On V - T co-ordinate system let us, take T along x - axis.

For isochoric process V = constant, thus k' = constant and V= £'T obviously represents a
straight line pasing through the origin of the co-ordinate system and k' is its slope.

For isothermal process T = constant. Thus on the stated co- ordinate system it represents
a straight linc parallel to the V - axis.

For adiabatic process TVY ™! = constant

After differentiating, we get (y - 1) V" 2dV - T+ V" 1 dT = 0

& (L)Y
dr y-1).T

The approximate plots of isochoric, isobaric, isothermal and adiabatic processess are drawn
in the answer sheet.

According to T - p relation in adiabatic process, T = kp"™ ! (wherc k= constant)
-1
ATAY i Py
and =] - [ So, “—=n""lifor n= ==
(TJ (pl) " " h
Hence T=T,n 1—?—1- - 290 x 10014~ 14 L 056 kK

(b) Using the solution of part {a), sought work done

vRAT VRI,

A= y-1  y-1

(ﬂ( -1y 1) = 5-61 kI {on substitution)

Let (pg, Vg, 1) be the initial state of the gas.

- vRAT
y-1

But from the equation TV 7~ ! = constant, we get AT= T, (TI’“ 1_ 1)

- WRT, (nv—l_ 1)
y-1

€ Know o, - WK One < gas
We know A, k done by th

Thus Agia ™

On the other hand, we know A, = vRT; In (-El“) = - vR T;Inn (work done by the gas)

Aga n'" -1 504 .
A (vy-1inm 0O04xIns

150

1-4

Thus
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2.41 Since here the piston is conducting and it is moved slowly the temperature on the two
sides increases and maintained at the same value.

Elementary work done by the agent = Work done in compression - Work done in expansion
ie. dA= p,dV-p, dV= {p,-p)dV

where p, and p, are pressures at any instanf of the gas on expansion and compression
side respectively.

From the gas law p, (V, + Sx) = vRT and p, (V, - Sx) = vRT, for each section

(x is the displacement of the piston towards secfion 2)

235x 2V
So, -p,= VRT ———5— = vRT - ——— {as Sx =
Pa—py= v V%—Szxz v. Voquz( V)
So dA = vRT 2V 7dV
—V

Also, from the first law of thermodynamics

dA= ~dU= -2v£—dr (as dQ = 0)

So, work done on the gas = ~dA = 2v *;—B——dT
Thus 2v-—£——d71'-= vRT v de,
-1 Vi-v
or, f"_{, y-1 vav
T V-V As
When the left end is m) times the volume of |
the right end. < @‘5
n-1 e
(Vo+ V)= (Vo= V) or V=n+1vo fagent
VdV
On integrating f —=={-1 f
T 1 Y
s 1 2 _ 42
or in—f,;- {y 1)[ 2ln(V0 Vv )L

- _l”z’—l—[an(vg—V"’)-mvj-v?)-mvg]

2

2
S Bt § anC,z-ian 1- n-1 =I--~11n~ﬁ-m-( +1)
2 n+1 2 4n

1k

2y 2
Hence T=T, (mg;]“ljw }
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2.42 From energy conservation as in the derivation of Bemoullis theorem it reads

2.43

2.4

%.;. —;—v"’ +gz+u+Q, = constant M

In the Eq. (1) u is the internal energy per unit mass and in this case is the thermal energy
per unit mass of the gas. As the gas vessel is thermally insulated @, = 0, also in our case,

CyT RT p RT _
Mo Mo-1) also o " Inside the vessel v = 0 also. Just

outside p=0, and u =0. [ngeneral gz is not very significant for gases.
Thus applying Eq. (1) just inside and outside the hole, we get

Just inside the vessel U =

_RT _RT __ _YRT
M ME-1) ME-1)

2y RT 2yRT
Hence Vo a ELCN. or, v = T 322 km/s.
M{-1) MG -1)
Note : The velocity here is the velocity of hydrodynamic flow of the gas into vaccum.
This requires that the diameter of the hole is not too small (D > mean free path ). In the
opposite case (D < < [} the flow is called effusion. Then the above result does not apply
and kinetic theory methods are needed.

The differential work done by the gas

a

2
dA = pdv = YET (-—;‘%)dTa ~VRAT

(as pVe vRT and Ve 91:)
T+ AT

So, A= -f vRdT = - vRAT
T
From the first law of thermodynamics

O= AU+ A= %—%—AT-—VRAT

= vRM%{%= RAT-%{J (for v= 1 mole)

According to the problem : Aa U or dA = alU (where a is proportionality constant)

or, pdV = m“;’ffT (1

From ideal gas law, pV= v RT, on differentiating
pdV + Vdp = v RdT (2
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Thus from (1) and (2)
pdV = (pdV + Vdp)

or, pdV(m-—i)-t-;-fml-Vdpm 0

or, pdVik-1)+kVdp= 0 (where k= g " another constant)

or, pde;1+Vdp- 0

PdVn + Vdp = O (where k-t = 1= ratio)

k

Dividing both the sides by pV

n%«rgp—a 0

On integrating n In V+In p= In C (where C is constant)

or, In(V*)w InC o, pV"a= C {const.)
In the polytropic process work done by the gas
An vR[T, -;T[]
n —

(where 7; and T, are initial and final temperature of the gas like in adiabatic process)
viR

and AU= o7 - 1)

By the first law of thermodynamics @ =~ AU+ A

a;——(rf r)+ (:r T

1 1 vR [n-v}
-{Tf—TJ)VR{Y_l-" } -G~ l)AT

According to definition of molar heat capacity when number of moles

v=1 and AT = 1 then Q = Molar heat capacity.

Here, Cn--(-n—?—%——z:}{)—ﬁ<0 for 1<n<y

Let the process be polytropic according to the law pV” = constant

P.
Thus, piVim p Vo, (;;—)- B
So, o"=f or mPp=nina or ne B
Ina

1n the polytropic process molar heat capacity is given by
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- R{n-v) - R R
n-1)¥-1) y-1 n-1

R Rlna In B
‘y—lwinﬂ—lna’ where n Ina

8314  8314In4
Se, Co=™ 166-1 " In8-Ind

Co

= « 42 J/mol. K

2.47 (a) Increment of internal energy for AT, becomes
AU VRAT RAT

y-1 -1

From first law of thermodynamics

RAT RAT
Q= AU+A= Sor- 0= 011

Y

(b} Sought work done, A, = fpdV- f —5;; av
v

= -324](as v = 1mole)

(where pV" w k= p, V' = p, V/'}

(Pf 144 Vflmn -V Vil—")

- T

I-n
_ P Vi-pVi VR -T)
1-n I-n
_ YRAT _ _RAT

— n_1-0-43kJ {as v = 1 mole)

2.48 Taw of the process is p= oV or pV = a
so the process is polyiropic of index n= -1
As p= aV so, p;=aV;and p=anl,
(a) Increment of the internal energy is given by
vR VA O
U= T - T = Lf:f*
{b) Work done by the gas is given by

ao PYimPYy aVimenVym Yy

n-1 -1-1
ﬂVoz(i*le) 1 2,2
- =3V D
(c} Molar heat capacity is given by
c Rin-y) R(-1~7y) Ry+l

- E-1 ((1-DE-1) 2y-1



206

249 (3) AU= Y—"%AT and Q = vC, AT

where C, is the molar heat capacity in the process. It is given that 0 = ~ AU

SO, Cn AT = ---g--- AT', or CR P _....R....._._
y-1 y~1
(b} By the first law of therpodynamics, dQ = dU +dA,
or, 2dQ = dA (as dQ = - dU)
2vC,dT = pdV, or, *"1 dT + pdV = 0
vRT 2 dI 4V
So, Y- 1dr+ VdV g, or (y-l)T+V“0
dT r -1 dV +-1y2
of, T T = 0, or ha'd constant.
-y R
We kn - el
© Welaow &= D6 -1
But from part (a), we have C = ~ —Y-B—l—
R {(n-y}R . .
Thus - = which yields
y=1~ (-DG-1 7
ne LY
2
From part (b); we know TV 2 & constant
T v G- 1)2
So, -jf» - - 'r;(""lyz {where T is the final temperature)
0

Work done by the gas for one mole is given by
T,-T) 2RI, [1-v""17)

A=R n-1 y-1

2.50 Given p= a T" (for one mole of gas)

-a
So, pT %= a or p(%:-’-)

or, PV = aR™™ or, pV*© V. constant

Here polytropic exponent » = aa 1
(a) In the polytropic process for one mole of gas :

A< RAT __RAT oo

1-n o
[1-=%)

{b) Molar heat capacity is given by

R R R R R
- - - - - 1~
¢ y-1 n-1 y-1 a y--1+R( )
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2.51 Given U= aV*®

or, vC,T=aV®, or vcv% =gV"®
a ,ﬁ__ . __1,_ a~-1 -1 __C_:Y_
of, av co v 1, o, V p Ra
1—“ - E'g - - Ll - R
or j:4% c, constant = a {y ~ 1) { as Cy 7= i}

So polytropric index n= 1 - (L.
(a) Work done by the gas is given by

A= -vRAT and AU = v RAT
n-1 y-1
Hence A= FAU(Y"”- AUy -1) {as n= 1 -q)
n-1 o

‘By the first faw of thennodynamics, O = AU +A

- Av+gﬂl’;1—)a AU 1+1—;—1—]

(b) Molar heat capacity is given by

C= R R R R
¥-1 n-1 y-1 1-a-1
R R
‘y-—1+u (asn= 1-q}

2.52 (a) By the first law of thermodynamics
dQ = dU +dA = vCp,dT + pdV
Molar specific heat according to definition
Ce 40 _ CydT +pdV

vdT vdTl
vRT
-vCVdT+ v dV‘C .,,Hﬁ
vdT Vi vdar’
We have Tw Toeav
After differentiating, we get dT = o Toe“y- dv
So av -t
! DT aTge“V ’
RT 1 RIze*” R
Hence C =C,+ V'aToe“V‘CV+aVTne““-CV+aV
(b) Process is p= p, eV
aV

BT, e
r v pﬂ
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or,

T= f—;?-e“"-v

RT dV R R
So, C=Cu+ VdeCV poe e“v(1+aV)m Cv+1+(1V

2.53 Using 2.52

RTdV .  pdV
{fay C=Cy,+ v ar = Cpé e (for one mole of gas)
a RT o
Wehavep-po-t--‘}, o, 7 =Pety, O RT=p,V+a
dvV R
Therefore RdT = p,dV, So, = ;(;
a) R R o
Hence Com Cotipy+i-—= —r+[1+—=|R
4 (Pﬂ V) Po Y- ( PDV)
R ek yR  aR
= iR+ + = +
( Y"‘l) PV y-1 pV
(b) Work done is given by
v, V
v, !
V. V.
AU = Cy(T,~ Tl)acv( R’ 4 1R 1) (for one mole)

R
~G-pE eV

1 a oV, -Vy)
"‘T__l{(Po‘*‘avz)vz"(Pn“‘Vl)Vl]' y-1

By the first law of thermodynamics O = AU +A
v, LB (V- Vy)
-1
o (V2 - V) V2
B g ¢ | | s
Y - 1 V1
2.54 (a) Heat capacity is given by

=g (Va=-V)+ aln

C=Cp+ —IE (see solution of 2.52)

T T
We have Tw Ty+aV or, Ve .=
g o

After differentiating, we get, %a ?.1:
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Hence Cm Cy+

v y-1 v o
T, YR RT, RT RT,
Ty (V =Tty St %t Gy

(b) Given T= T, +aV

As T'm Ekz for one mole of gas

R RT
pP= V(T0+aV)= v = oR

Y Y:

RT,
Now A-nfpdV-f T-:»aR dV (for one mole)

% %

V?.
= RTyin V+G(V2-— vy
1

AU = Cy (T, Ty)
- Cy{Tu + O V2 - Tﬂ o Vl] - G,CV{Vz - Vl}
By the first law of thermodynamics Q= AU +A

aR Vy
= 0=V + Ry + R (V- V)

1 v,
- aR(Vz"‘Vl) 1""""':"- +RT01H‘""'

1 v,

V2
= aC,(V,-V,+RTyn 2

VI
V
- aC v,- Vl)+RT9in---
Vi
Heat capacity is given by C= Cp 4+ J g

(a) Given C= Cy+al

TdV =~ & dV

R
SO, CV+{IT- CV'&—V—d—TOI, E v

Integrating both sides, we get %T =InV +InC, =In VC;,C, is a constant.

1
Or, V-Cym= e TR o Vet - constant
¢

(b)C=C,+BV
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RT dV RT dV
and C=Cyu+ Vv ar CV—FZI—T_' Cy+ BV
RT dV dv Bdr -2 dr
or, VT BV or, mV2 RT o, V T

-1

Integrating both sides, we get %EV——T »InT+InCy=In I-C,

Couw B pa L RV -apv 1
So, nT-C, v T-Cym= e o, Te o constant
(€ C=Cy+ap and C= CV+%I~'-~%.V-
RT dV RT dv
So, Cy+ap= Cy+ v 4T so, ap= ~r %
or, a BT BRIV {asp= RT for onc mole of gas)
’ Vv vdr 14
or, ﬂ- a orf, dVw adT or, dT'= &
dr a

So,Tw —g +constant or V —cT'= constant

2.56 (a) By the first law of thermodynamics A = @ ~ AU

or, w CdT - CypdT = (C - C,) dT (for one mole)
Given Ce= %
nI,
a n7,
So, A= | |z=CyldT= aln~7—=-Cy(mTy-T)
T Ty
Tﬂ

RT
= alnn-C,T,(n-1) = alan + ,“Y“'_“_"'l‘('fi"'i}

dQ RTIdv
(b) C W+'3-j':" TE‘PCV
; a, RTdV_a
Given Cm 7 S0 Cy+ VAT T
R 1 dV «

o TR VT RE T
av  «o 1 dr
AN, JE Y ol

ok V  RE y-1 T

or, -1y 7 T
Integrating both sides, we get
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o, @-DhV= -i%%llmmnmx
or, mvr 1T :.B,er;ll
,_1_91“ —af-1
VKT T v
or, %K‘f,“” -ty -1V
afy - BpV
or, pv'e = RK = constant
2.57 The work done is
", "
RT a
A-fpdV-f(v_b—Vz)dV
v, v

1 E

V,~b
= RT In Vl +a(-‘72——-‘~;1-)

2.58 (a) The increment in the internal energy is

d
- [ ()
Vl
But from second law

(7, 7, = 7,

RT a
On the other hand p~ m..v
o) | RT 8
o ! (ar]v vop M av) " v
1 1
SO, Alf = ﬂ(vi—vz)
(b) From the first law
A+AU=RT In 2222
Q=A+AU=RIIn 53

2.59 (a) From the first law for an adiabatic
dg=dU+pdV=140
From the previous problem

F Fli)
dU = (a;’)vdr (W) dv= C,,dT+v2dV

RTaV
V-b

So, 0= CpdT+
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This equation can be integrated if we assume that C, and b are constant then

R 4V a‘T R
CVV A Tn(} or, inT-&-CVIa(V—b)-constant

or, T(V—-b)R/CV' constant
(b) We use
dU = C,dT + -f'ngV
Now, dQ = C,dT + RdeV
RT [aV
So along constant p, Cpm Cy+ V-b (BT )P
RT {(av RT _ =
_ . RT  2a\{aV R
On differentiating, 0= (“ V- by Va) (ar] *Vob
. T(g_‘_x) __RI/V-b __ V-b
¥ T RT 2a B - ?
@ L Tt I“Za(V :
(V-by V RTV?
R
d ComCy= o
an f A 4 1_2¢1(V—b)2
RTV?

2.60 From the first law
Q= Ug=U;+A= 0, as the vessels are themally insulated.
As this is free expansion, A= 0, so, Uy= U
2

But UsvCy 7=
a a -aV,v
So, Cull;-T)= (Vl<l-V2_Vl}vml ViV +V)
—-aly -1} Vyv
or, AT = ___.._(Iw)..mg....
RV, (V,+ V)

Substitution gives AT = -3 K
261 Q= U~U;+A=U;-U;, (as A= Gin free expansion),
So at constant temperature.

0 —avz_ _gﬁ wzvz“vx
v, v V-V,

= 33 k) from the given data.
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2.3 KINETIC THEORY OF GASES. BOLTZMANN’S LAW AND

2.62

2.63

2.64

2.65

2.66

2.67

MAXWELL’S DISTRIBUTION

From the formula p= nkT
n‘_‘?”u 4%10" " x 101 x 10° or m?
T~ 138x10-2x300 T

= 1x10" perm® = 10° per c.c
Mean distance between molecules
(107 % ce)? = 10¥°x 10" ?*em = 02 mm.

Afier dissociation each N, molecule becomes two N-atoms and so contributes, 2 x 3 degrees
of freedom. Thus the number of moles becomes

m mRT
37 (1+1) and p= Zos(14m)
Here M is the molecular weight in grams of N,

Let n, = number density of He atoms, n, = number density of N, molecules
Then p=am+n,m,
where m; = mass of He atom, m, = mass of N, molecule also p= (n, + ny) kT

From these two equations we get

. / e
"t (kT mz) (1 m,
- nvx2myvcos Oxddcos B
p dA
- 2mnv coss 0
From the formula

ve V1B o B2
p )

If { = number of degrees of freedom of the gas then

C,= Cy+RT and Cy= —;—RT

C
y--—-*"~=1+-2:— or i= 2 . 22
CV H y—l E.E..
p

A2 A NRT _+/3K | [3RT
Vpound s TR and v, p= ™
Ywd _ /Y AfE£2
50, v 3 3

ms

1
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2.68

2.69

2.70

(a) For moncatomic gases i » 3

v,
—omd \/§- - 075
Vins 9

{(b) For rigid diatomic molecules i= §

Ysound 7
Vv 15

ms

For a genersl noncollinear, nonplanar molecule

mean energy = %kT (transiational) + -;—kT (rotational) + ( 3 N ~ 6) kT (vibrational)
= (3N - 3) kT per molecule

For linear molecules, mean energy = %kT (translational)

+ kT (rotational) + { 3N ~ 5) kT (vibrational)

= (3 N- %) kT per molecule

Translational energy is a fraction

1 1 .
SN-T1) and 3 iit the two cases.
2N -~ 3

{a) A diatomic molecule has 2 translational, 2 rotational and one vibrational degrees of
freedom. The corresponding energy per mole is

%RT, (for translational) + 2 x %RT, (for rotational)

+ 1 % RT, (for vibrational) = %RT

7 .2
Thus, Cy= ZR, and y= Cv# 5 |
(b) For lincar N- atomic molecules energy per mole
- (3N - -i—) RT as before
3 6N-3
= - x ——= v
So, Cy= 13N 2 R and v EN_3
{¢) For noncoilincar N~ atomic molecules

3N—2_N—2/3
3N-3 N-1

Cy= 3(N-1)R as betore (.68) y=

In the isobaric process, work done is
A = pdv= RdT per mole.
On the other hand heat transferred Q = Cp dr

Now C, = (3N - 2) R for non-collinear molecules and C,= (SN - %) R for linear molecules
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1 non colline
3N- 2 (e} mear
Thus 4 -
Q 3 linear
3N - ‘2“
¥ 5 A 2
or monoatomic gascs, =5 an én 5

2.71 Given specific heats ¢,, ¢, (per unit mass)

R
M(cpwc‘,)uR or, M= s
C 2c,
Also y= L 241, o5, imotm
c, | f—‘31 c,~¢,
cv
J 29
272 (3) C,= W ——= 55 R
20-7 29 7
Co= g3 R v=gpm= i3
i=35
(b) In the process pT'= const.
T? T dv
Vsconst, So ZT—— VneO
This  CdT= C,dT+pdVe Cydl+av=Cyar+ ZLar
29 12-4 3
or C'Cy 23*(83)1? S Cv' 8'3 R‘ 2R

Hence i = 3 (monoatomic)
2.73 Obviously

1 3 5
gCv=antsn

(Since a monoatomic gas has C,, = %R and a diatomic gas has C, = %R. [The diatomic

molecule is rigid so no vibration})

C 3 5
R p“z EYZ*YI'*YZ
C, 5v.+7
Hence -J:M
Cy 3n+dy

2.74 The internal energy of the molecules are

U= }z—mN<(;T-v 2> = 3é—rm‘\n’-:uz-»vz)
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275

2.76

21

where V= velocity of the vessel, N = number of molecules, each of mass m. When the

vessel is stopped, internal energy becomes -é-mN <>

So there is an increase in internal energy of AU = «imN V2. This will give rise to a rise

in temperature of

EL-va2

there being no flow of heat. This change of temperature will lead to an excess pressure

RAT mNV*
ap= Ty Ty

b MV,
and finally » " iRT 22 %
where M = molecular weight of N,, i = number of degrees of freedom of N,

{a) From the equipartition theorem

- 3 _21 3kT 3RT
e-i-k'i'-éxlﬂ I; and vm,svm ‘\/M = 0-47 km/s

(b) In equilibrium the mean kinetic energy of the droplet will be equal 1o that of a molecule.
in 2 3 2kT
e & pvi = ‘ikT or v, =3 ndp = +15m/s
7

Here im 5,Cy = %R, ¥ - -ggi\len

v -\/—-*———33?-}—1: P EVELY NN S |
rms M n ™ q M 1,}2

Now in an adiabatic process
TV = TV = constant or VT?= constant

i2
v'(—lir) VI or V=V oor VanV
kH
The gas must be expanded 1y’ times, i.e 7-6 times.

Here Cy= SR (i= S here)

m= mass of the gas, M= molecular weight. If v increases 1 times, the temperature will

have increased nztimes. This will require (neglecting expansion of the vessels) a heat flow
of amount

RM?-1)T = 10 k.

i

L
M
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2.78 The root mean square angular velocity is given by
1
2

or W= V.%!;I = 63 x 10' rad/s

279 Under compression, the temperature will rise
TV~ constant, 7V>* = constant
or, TM V= T,V o, T=n"%T1,
So mean kinetic energy of rotation per molecule in the compressed state
kT = k Ty = 072 x 10707

T 2x %k T (2 degrees of rotations)

2.80 No. of collisions = %n <y> = P

vV a1, /T
NOW, Nt =
v n<w> mvT

(When the gas is expanded 7 times, n decreases by a factor n). Also
: ; . d . -i-1
TV =TV or T=nY'T so, %—»* %n’l/'-nmr"
i+1

i.e. collisions decrease by a factor 1y ¢ , { = 3 here.

281 1n a polytropic process pV" = constant., where n is called the polytropic index. For this
poiytropic pi P

process
pV™= constant or TV = constant
dar dv
bl ~DNE e p
T+(n I)V
Then dQ=CdT=dU+pdV=C,dT+pdV
i RT i 1 i i
- irarsBave irar--t-rar- (2-n_1)RdT
Now CnRso-i-- ! = 1
2 n-1
S NP L S
o n-1"2 z -2
A~1
Now Yore> 1T 1(V)?2
v n<a> VYT x|V

1
i-2 -2 oi-1 I .
- n ('r') " (;'—) = 7] i~2 {mes = 552 times
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2.82 If a is the polytropic index then
pV® = constant, TV®~! = constant.

<«v'> V. /T vr-V2

Voo
Now vono<ws  V T_V'T““V2=1
i 1
Hence a—I'—Z or o= =1
iR R
Then C-2+2=3R

283 v = VAL L AfEL /2 045 ks,
m M P
Vo™ \/ -8-8‘ = 51 km/s and Vo ™ \/;52 = (J-55 kmn/s
np Y

2.84 (a) The formula is

4 - 7 v
daf (u) = V;u e " du, where u= v,
l+dn
[v=-v,l
Now Prob —;—L<6n = | df (u)
£ 1-bn
4 -1 8. 0166
=7 x2dn ﬁeén 0-0166
Vv v v
(b) Prob Mo 8m |= Prob| |- | <y -2
Vs Vo Y v
u?rob( u-\/% < %61;)
3 3
Vi+V3 on
4 2 .47
= —=ue” " du
Vn
3 3
V3-V3zon
4 3, 3 12¥3 325, .o
\[;‘.xze 2 287] ﬁ;e dm = 00185



285 @ Vme=Vp= (V3 -v2) V %I = Ay,

2.8¢6

2.87

2.8

2
m Av
T ?((—-m) /K = 384 K

(b) Cleasrly v is the most probable speed at this temperature. So

1 /ZkT mv*
- =y or Tm 2% = 342K
(a) We have,

v2 2.3 y2 z,2 v 2 2 2,2 kT vz - v?'
_1_e-—vi.fv" __Ze—v,/v' or it evl—vlfv’ or V_z" - 1 22
V2 v V2 m o (nvind)

m(vi -2
—-(--‘--52-)—-3301(

So T =
Y1
2kln—2
V2
2 2,2
® FO= Lo x 1L comes trom F(vydv= df (), du= 22
{?;VP P V‘P vp
2 2,1 2kT, 2&T,
Vv - /Y 2 -, {0 - [
Thus —5-e b’y = v/vpze vy, i ,V;'a ——m now

VP;

e“%(l"l) L or __mv2 1 ! 3 Inmn
- —_—— -
¢ n? 2kT, nl 2

» 0 Inn
Thus v V - \/ T-1i/n
NI BT, JET
BN my M, Pe) M,
2RT "/MN
v —Vpaw Av= e (1- A )

i My 0

My (av) AvY
Te M@ m@® ek

VT v

1]

“He "H
V2 - V2 - v{ﬁ" 531"_] My
i € g = -5 [ P, OF € =

3/2

m
Vv v H
Py Pre

Inmy, [fmy,

My —-my

Vo 3T , Putting the values we get v = 1-60 km/s

219
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Névav _ it
289 dN(v)= —— ’
Vr vz

For a given range v to v +dv (ic. given v and dv ) this is maximum when

& dN(V) . mvz/w2
‘5" Nv dv
3.2 34 1m?
o, VP 21"P - Thus T = Tk

290 Fy=2nmv dv dv,
2,
) e T (vi+vi)dvx2nvj_de

Thus dn(y)= N(z T

291 <v.>= 0 by symmetry

<|v[>=flv,[e R dv /fe’?:;dv" venzr; dv, /fezgzdvx
-y ue™" du e du
S /a
=@{%e"d{/.{e“x2dk
'\/—_Y(l)/l‘() VEJT

Zka 2»/"/feq2djf
(-

2.93 Here vdA = No. of molecules hitting an area dA of the wall per second

- de(vx) v, dA
o
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o v f "(mkr) e My d,
0

-] —;:(2;*)“ :

RYL.Z ey 7 S W
2mn 4 ’

(where <> = V% )

V2

-—mv/?kT
294 let dniv,) H(an’[) e dv,

be the number of molecules per unit volume with x component of velocity in the range
v o v, +dy,

e
3

Then p= f Zmv, v, dn(v)

295 372 2
<%>-f(§'??‘k—f) e ;:T 4nv dV'};
0
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3/2 2
2.96 - N[ i g2 - D)
dN (v} N(ZMT) € 4y dve dN(£) 2 de

372

dN(S) m —mvz/ZRT 2 _‘k
or, yr N(znkr) e « 47V T
dv 1
Now, e-zmv2 Sl
2
dN (g) m - /T 2 1
o de N(anT) € 4n m m
2 «3/2  ~e/kF 172
=N k e £
vz “D
ie. dN () = er_ KTy ¥ e "™ 22 g¢
The most probable kinetic energy is given from
d dN(s) | 1
P = { or, 5 € e ~ e =0 or en-z—kT- €y
Th . locity i 3 /E_l’:
¢ corresponding velocity is v= o 2 Ver
297 The mean kinetic energy is
32 - ek 12 -7 T {5/2)
<€> f de f de = kTI‘(3/2) sz
0
Thus
%{1+&n)k1‘
N 2 32 e 12
v f N (k1) e e “de
%H‘(l-bq)

3/2
- %e"w(%) 28n =3 \/;6; e o

Ifdn = 1% this gives 09 %

298 AN %(m-yﬁf Ve e M4y
T

¥y

- %(k]‘)"m \/;:;f Pt de (g, >> kT)
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2 - - €y -t
- 7= 6D 32 yeo kT e ™ w 2\/-3;--& e M

{In evaluating the integral, we have taken out Ve as \/E; since the integral is dominated
by the lower limit.)

299 (a) F(v)= Av e ' rar
For the most probabie value of the velocity
——{-)—JZVV -0 or 3AVie ™M _, v;_m____ZmV e~ AT g

2&T
3T
So, Vo= V-

This should be compared with the value v, = \/ g’_ﬁ_f_ for the Maxwellian distribution.

{b) In terms of energy, e = %mv2
dv

3 -mv/?kfl‘
Fg)y= Av’e oy

2€ —ewr 1 2&: o
= A e = 4
(m) V2me m*

From this the probable encrgy comes out as follows : F' (e} = 0 implies

2A( _wnr £ —enT
Zie - ={, o, g, = kT
(e .

2.100 The number of molecules reaching a unit arca of wall at angle between 9 and 6 +40 to
its normal per unit time is

Ym OO

dv-f dn (v} ig-vcosa
4
ve 0

-fn(anT) e™™ /23 4y 6in 0 cos 04 O x 2 7
0

mw 172
an[ﬂ) fe""xdr smeoosede-n(—z-"i) sin @ cos 00
man mn
0

2.101 Similarly the number of molecules reaching the wall (per unit area of the wall with velocities
in the interval v to v + dv per unit time is
8= x2
dv-f dn () %E:., v cos 0
Be0
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B w2

—mvz/ZKT 3 .
= n(ZthT) e v dv sin® cosh 40 x 2x
[: 0

m 2 .
- v S2AT ’3(]
o (2 n:kT) € v
2102 If the force exerted is F then the law of variation of concentration with height reads

n{Z )= nﬂe'ﬂz/kr So, M= eFM4T ot Fa Héhw =9 x 10° N

2,103 Here F= :—E‘CPApg- I_z..._]llﬂ or N = 6RTIn !!
6 Nk ¢ xngph

In the problem, L o 1-39 here

Yo
T=200K, n=2 h=4x10""m, d=4x10""m,g=98m/s?,A p =02 x 10° kg/m’
and R= 831 J%

Hence N = 6x831x290 xin?2
’ 4 nx64x98200x4

% 10% = 636 x 10® mole ™!

concetration of H, e Mu SR (My ~My )
. = = e“ ", h/RT
concentration of N, "o e~ My, ~EWRT T 8

2-104 ’]‘E ==

So more N, at the bottom, (T!—TL = 1.39 here)
o

2.105 n (h) = nle—-m‘xh/h, (h) = nzemngh/ki"

n
They are equal at a height k where ;1—1-- o Bh (- m VAT
2
kTinn —lInn,
of he ——u=™
g my-my

2.106 At a temperature T the concentration n (# ) varies with height according to
niz )= noe_"'“/kr

This means that the cylinder contains f nfz ) ds
0

n, kT
sfﬂoe-m‘g/ﬂ dz = fng
0

particles per unit area of the base. Clearly this cannot change. Thus #, kT'= p, = pressure
at the bottom of the cylinder must not change with change of temperature.
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fmgze“""’/"dz fxe”"dx
L o ol
<Us = 2 kT2 KT = AT
fe"""gzm'dz fe"”dx
0 0

When there are many kinds of molecules, this formula holds for each kind and the

average energy
kT
<> = Z—f:‘—“u kT

3t
where f; a fractional concentration of each kind at the ground level.

The constant acceleration is equivalent 1o a pseudo force wherein a concentration gradient
is set up. Then

e-—MAwl/RT= 1 -
RTIn(i1-m) nRT
or w M, 1 M1 =T70g

In a centrifuge rotating with angular velocity w aboutan axis, there is a centrifugal acceleration

o®r where ris the radial distance from the axis. In a fuid if there are suspended colloidal
particles they experience an additional force. If m is the mass of each particle then its

.om . Lo
volume i$ ; and the excess force on this particle is

i"p—(p - o) w’ r outward corresponding to a potential energy - g—:—}(p - Py w? 7
This gives rise to a concentration variation

nir)= naexp(+§f-,;;(p*%)w2r2)

n(ry) M 2/2 2
Ts e s o (s gme-e o (3-)
m M . .
where =R’ M= N, m is the molecular weight
Thus 2pRTInm

(p - po) @’ (7 - 1))
The potential energy associated with each molecule is : -~ %m @’

and there is a concenfration variation

m o’ r? Mo r?
n(r)= nyexp TokT = Mo XP{TopT

22
Thus Ty - cxp(M) or w= ZRTIM]

2RT
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Using M= 12+32= 44gm, I= 100cm, R= 831 x 107—;;%,?' 300,
we get w = 280 radians per second.

ar
2.111 Here n{r}= nyexpi- T
(a) The number of molecules located at the distance between r and r+ dr is

4str2a'rn(r)— 4unoexp(~ggﬂ)rzdr

. d 2ar’ kT
{b) r,, is given by — s n{)=0 or 2"7' 0 or r,= ‘\/—;
{c) The fraction of molecules lying between r and r + dr is
dN 4n Pdr nyexp (- ar*/kT)

N ]
f anriadr ng exp {~ ar*/kT)

f4zﬁrdrexp( )(7) 4n ‘/.-exp{-—x)
el
Thus %s(—f—) 4nrdrexp(kr)

T kT
2
2 - Fr
(d) dN = N( kT) dnr a'rcxp(k ),

372
w2 ﬂl‘z
So niry= N( kT) exp ( kT)
/2

3,

times.

2112 Write U/ \/— dr = \/_ L
e U= r = 3 r =
1 a. or r a 6] P 2 2 U

U du U
s0 dN= ""4“::2\/;{(7 exp (kT)

When T decreases 1 times n(0) = n, will increase n

=2nnya ¥ UY? exp (:ﬁg,—)dU

The most probable value of UV is given by

d (dN 1 u¥? 1
iol@) o (e | (3F) = w3

From 2.111 {b), the potential energy at the most probable distance is kT



2.4 THE SECOND LAW OF THERMODYNAMICS. ENTROPY

2.113 The cfficiency is given by

2.114

2.115

I -7, T »T
M= s 41>
Tl 1 2
Now in the two cases the efficiencies are
T +AT-T, 7 d
Ny = “W y 1 mCTease
I, -T,+ AT
W= i, T, decreased
T,
Thus N <
7
ForH,, y= ¢
5 P?’V,
V=PV p3 V= p v, Qf
pVi=ps Vi, pVi=p, V] PZ,K'C

227

Define n by V= nV, «adicthatic

Then py= p,n"" s0 Pﬂ}Vu
. QG Pils

?

PyVy= p3Vy= szzni_?‘ Pivlnl_v

pVi=p V] so V. 7= ViTTal™Y or V= nv,

V2 ' VB 1...1 VS
Also = pVolng, Q= psVy Inon = Dy Vo 1B =
v, V, vy

Finally n= 1-%2»= 1-n'"1= 0242
1

{b) Define n by py= %2-

pVi= %V; or Vy= n¥y,

So we get the formulae here by n->n'" in the previous case.
V-1 2
n- I-n( U e 1 en™F ~ 018
Used as a refrigerator, the refrigerating
efficiency of a heat engine is given by
A

AT0-0 0

2

where 1 is the efficiency of the heat engine.

1-m | 9 here,
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2,116 Given Vy=nV,, V,= nV,
;= Heat taken at the upper temperature

= RT inn+RT,Inn= R(Ty\+T))Inn

Now T,V e T,VI"Y or V=
1

T.
Similarly V= (

y-1 T.y~1
2 1
"""‘"‘) Vq, Vﬁ= ('j;;) 14

T !
Vs
Thus @, = heat ejected at the lower temperature = — RT; In v
5
. .
hiy-1v; - (Tyr=t v,
= “RT?‘}“(TZ) V4a ..Rif‘e,ln(ir2 n2V3

i

T, n

ke,
Ty-1 g (1) !
= - RT Inj— Wik =2RTInn

T

Thus TT v 1,

n=1

C
2117 g = Cyll, -~ T3 = }sz(Pz -P3)

Cy
Q= "RT'Vi (P1 '"'P¢)

Volpy-p3)
h Vilp,-py)
On the other hand,
6p, Vi=py Vi, p3Vi=p, V] also V= nV,

Thus n=1

Thus  py = p,n', py= pyn’

Al

Qr ‘

and M= 1-n1"Y, with y= -z—for N, this is iy = 0-602

C C
218 Q= 2p (V- V), Q= B P (V3= V)
P (Va - V4)

S P T S
° p(Vy-Vy)

n=1

1
Now p, = np,, p,V] or Va= nyV,
1
pVimp V{ or Vi=n1V,
-1 K Lot
so M=1l---n -n

B Al
Al i as Al

I P’

e Va2
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2.120
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Since the absolute temperature of the gas rises n times both in the isochoric heating and
in the isobaric expansion

py=np, and V,= nV,. Heat taken is
Oi= On+0Qp
where 0y, = €, (1 - 1) T, and @y, = C, T, (1 -;11-)

Heat rejected is I} n'g
Q= Q' + 0", where Pg A ,Qﬂi
1 4 ¢ 4 F’IVZ
Qu=C,Ti(n-1), Q= CPT1 (1-;}
Y f
{ .:13, e ""—"‘“?QQ_{
o Cv(n—l)-t-CF( ‘,,) A
2
Thus v = 1~-§-= i- 1 l
1 C,(n-1)+C (1-——) <
4 v H /32 .& ' p y
1 2,Vg
1 hd (F/?z)’ sz 7 ’
um1+y(1-~] 1+
= n . rty
"1 (n—1)+‘1 i‘l“ -+-~1~==1_1+"Y
y (~J vl
(a) Here py= np,, py Vi = py V.,
np, Vi = pyVJ emp 71 7o

V,
0, = RTgln%, Q,=CyTyn~1)

1
But nV!"'= V{"' or, V= Vyn1-!

L RT, P’)V’ ' /
Q' = RTylan¥1 = —lan Py isothermat
1 . | 2 (Bmpr) |
Thus n=1- 2 on using C, = —— -
n-1’ Vooy-1
(b) Here Vo= nV,, p, V= p, V,
and p,(nVY= p,V{
ie. n V] taVi! or Vi-n"y—}l'Vo
Vo Q
Als =C T,(n-1), Q.= RT,In — !
°0i= G Ty(n=1), Q= RTyIn 3y » /oo
1V ;
¥ acrabatie
or Q= RT,lnny-1= %Tolnnscpfuinn T
Q.
Thus ne1- :ﬂ_ ﬂl Isothermal P8 v .
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2121

2.122

Here the isotherinal process proceeds at the maximum temperature instead of at the minimum
temperature of the cycle as in 2.120.

2, Yoo isothermal (oo
Qe ARV To Q
P isochor isothermal
' adubatic
&
adigbatic ~p Vi e (P.V,To}
(@) v > (B, %’9 @sz

)

P

(2) Here p, V= pyVy, py= "
P Vi=py V] or py V] = npy Vg

1
ie. VITt=nVy™t or V= Vyny-1

) {; 1 Vi RT,

Q2= Cvr‘)\l—;;),g RTﬁln""";‘;= Y_liﬂn'CVTolnﬂ-
Qz n-1

Thus n-l-—-——;— l_nlnn

v
(b) Here VZ'“;}'PGVG‘ngl
PoVi=p,Vi=pn V] = V%_lnm‘tvv—l or V= n(y/y——l)vo
2= C T( ) Q,= RIy! ﬂ*‘"‘ “-Y—TlnnaC Toinn
Vo

n-I
ninn

Thus n=1-

The section from (p,, V,, Ty) to (p,, V,, Tp/n) is a polytropic process of index a. We shall
assume that the corresponding specific heat C is + ve.
Here, dQ = CdT = C,dT + pdV

Pa Yo, To
Now pV® = constant or 7V®~'= constant. W fo3
RT R isothermal
sopdV= Sy dV= -3 Ay To
Polytrepic o
ThenC-=C-R = R L ?:dexi'
Vioa-1 y-1 o-1 o F Q2
RT, p,V adiabatic =,
We have p, V= RTy= p, V= —;3. wi?.;_l ke 2;75/{7_

v
poVo=pVy=np, Vo, py Vo= P, V3,
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i
V=V or Vg'ln%Vz‘"l or Vo= Vony-i

Vn-—l Ivg,..l _,.......1....... .....1......_,.....3.....
1=V o Vim=n aeitVom ny-1 a1V

) 1 V] 1
Now @', = CT&)(I “”;): Q= RTQ!H%' RT“(ﬁ“a—I)iﬂ"' CT,Inn
n-1
Thus n=1- ninn
B4o y
AR Fi, Vo, 71
\ adiabatic Y
& _ > Q2
| adiabatic ~__ |
Aoz 1ag AT Poboro
’ Tl i Tl
(a) Here Q'y= C,|Ty -t = C, Ty [1--) 0, = Cy|Ty -
Along the adiabatic line
T, Vi e T,(n V'™ or, Tym Tyt
T, n-1
50 QI-C‘,-'-'-lm(n"-l). Thus 7= 1-";,1)
(b) Here Q)= C, (01, -Ty), &= C, Ty (n-1)}
Along the adiabatic line V'™ '= constant
AN
T,V 'eT, (;9) or Ty=n'"'T,
n'-1
Thus s ] —
T ey
ar
77%;%‘-’75 i . NAo, VO;TOTP
Y Vi
1> {2
L
=R
£on Va_v TO Qz aznn PO, Va,Tb

(b3



232

2.125

2.126

' 1 " ! 1 ¥ "
(a) Q= CpTg(i“;). " = Rfylnn, Q' = Cy T, 1-—"), Q. =Q,+Q";

n
1
0 Cp(l_;}
So n= 1-—5% 1- -
1 Cv(la-—]vainn
n
-1- Y -1 1n~1)
R nlna n-1l+{-nlnn
1 v o ——
Cyn=-1
(®) Q= C,Ty(n-1),0",= C,Ty(n-1) Q",= RT,Inn, Q',= Q",+Q",
o, n-14+(-Dlnn
So e
) Y-1)
We have

2= TRy, Q"= C T (t-1)Q, = Q' +Q", and
"= R Inv, Q" = C, To{x-1)
as well as J, = Q.+ @,” and
Q2f - err + sz
o, Cy{x-1)+RInv

So n= 1_—Q:+ -CV(1~1)+1:RInv

t———ii»luv
.- y~1 - {t-1}lnv

T~1 T-1
+tiny thve
y-1 v -1

Here Q," = C, Ty (t-1), Q'1" = tRTJun and
Q" =CT(t-1), @, = RTjinn

in addition to we have

@1=¢, +Q," and

QZJ = sz’ +leffl
! C (t~1)+Rlnn
So n=1-——Q—3==1— ¢
o5 C,(t-1)+TRInn

I
T_1+(1-—;)Inn

T-1+ 1-~1~ Tinn
Y

1
I1=-={lnn
1_1‘“’( Y) . {(t-1}inn

':-—1+(1-;1;)tlnn tinn+1~%§gl

=1....
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2127 Because of the linearity of the section
B C whose equation is

2

vV

1
We have ;= vV oor yv= \/*c.

Here Q",= C, T, (V1 - 1),

Q"= C,,To[l---—}——)= ¢, t/% -1

RT,
Thus Q= Q",+Q",= ;{—:ﬂf(\/'-n(u%)

Along BC, the specific heat C is given by
CdT = CydT +pdV = Cvd:rm(% ) ( % ) T

1, y+lx~
Thus o= ZRTy 1 \/-E
, Q0 \/_+Y 1 G-Hr-1)
Finally 1_93”_ Ve+11+1 @+)(Vr+1)

2128 We write Claussius inequality in the form

fee g

where dQ is the heat transeferred to the system but &, O is heat rejected by the system,
both are +ve and this explains the minus sign before &4, Q,

In this inequality T > T>T,  and we can write

40 (4
Jafte

Ql Q'Z Tmm Q 2

Thus e & e QT
Tmax Tuun Ql
Q'Z min
or Ne le—"<l~ N earmor
I max

2.129 We consider an infinitesimal carnot cycle with isothermal process at temperatures
T+dT and T.

Let A be the work done in the cycle and 80, be the heat received at the higher temperature.
Then by Carnot’s theorem
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2.130

2131

2.132

2133

_QA;_‘Q P’!“dP ........ i 5Q1

& T !
2 [ S 4
1

v

On the other hand A = dpdV = (gg:) ardv

while 30, = dU, + pdV = {(—E&f—) +pidvV
T

av
EANIZ ")
Hence (&V)T«i-p T(BT)V

v . — v — -

t
i
i
}
|
i
!
i
!

v Vdv

(a) In an isochoric process the entropy change will be

T

Cydl T{ Rinn
= = = =
AS f T CV'“T,- Cylinn y-1
T

For carbon dioxide y= 1-30
50, AS = 192 Joule/°K ~ mole
(b) For an isobaric process, /I
T \ 1sotherm
AS= C inzl= C inn~ L2 W
7, F y-1 \
= 25 Joule/*K =mole \

In an isothermal expansion h

v
AS= vRInf ANy

i

2

Vv
50, —L= e®¥® & 2.0 times 243

|4

1]

The entropy change depends on the final & initial states only, so we can calculate it
directly atong the isotherm, itis AS= 2RInn = 20J/°K

(assuming that the final volume is n times the inital volume)

If the initia} temperature is T, and volume is V), then in adiabatic expansion.
y-1 11
vt =1T,V;

- Vi
s0, T=Tyn' "= T, where n=
Vo
V, being the volume at the end of the adiabatic process. There is no entropy change in
this process. Next the gas is compressed isobarically and the net entropy change is

T
LT
As (Mc,,]m 7
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v, V V,
But —l = ---9- = .-m-q = -
u o o or T;=T, . Tyn
1 m m Ry
S | | — - e EC L™
o AS (M p)]“ MCPinn Mlelnn 9-7)J/K

The entropy change depends on the initial and t pa, o To
final state only so can be calculated for any
process whatsoever.
We choose to evaluate the entropy change along Y
the pair of lines shown above. Then

T bl

p g > .

vC, dT drT Y2 .
- 4 ° v T R
as f T +f Vo _ﬁ__,Vo,_. --Q,of.Va,g’
7, 1, s B B
¥

_ 1 I Joule
-(—CvnB+Cplna)v=Y (yIna-Inple 11 5= K

To calealate the required entropy difference we only have to calculate the entropy difference
for a process in which the state of the gas in vessel 1 is changed to that in vessel 2.

2»l Ti
AS= v f CV T f
as J A
» v({C nha-Cylnaf)
v Rlna-—ﬁ-—}ﬂﬁ = vR lua-M
Y- y-1
With ya%,a=2&nd g=15v=12 P, .
-F T
this gives AS » 0-85 Joule/°K g Jvf’a[/} P -;'/j-" V""‘B’
For the polytropic process with index n
p V" = constant
Along this process (See 2.122)
1 1 noe
¢ R(y——l _n~—i) G-De-D ¢
ITB
So as= ] ce Y _Rins
T G-Hr-1}

T
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2137

2.138

2.139

The process in question may be written as
P

e R
Po Vo
where o is a constant and p;, V, are some reference values. For this process (see 2.127)
the specific heat is
1 U AT §°S 5.8 1
C CV+2R R(Y“1+2) 2RY*1
Along the line volume increases o times then so does the pressure. The temperature must

. 2.,
then increase o‘times. Thus
2

a T,
M*fvcﬂ, Xgmm]nazw vaIna
T 2 y-1 y-1
Tﬁ
if v=-=2,y=-%,a-Z,ASa%&JouIe/"K
Let (p,, V,) be a reference point on the line
p=py-oV

and let (p, V) be any other point.
The eatropy difference

AS=S(p,V)-S(p;, V) AN
P 1% pp-aV v
x CV ln;l—-i-cpln—‘?;a thi pl +Cp}ﬂ"‘?—1- ‘!
For an exetremum of AS
9AS _ ~aCy G o 4

vV  py-aV V (g%)

or C {pp-aV)-aVCy=0

- Y Pg
aly+1)

& As

This gives a maximum of AS because pYee; <0

ofr Y{pg-aV)-aV=0 or V=V

(Note :- a maximum of AS is a maximum of S {p, V))

Along the process line : S= al'+Cyln T
or the specific heat is : C'= T?T-»- al+Cy
On the other hand : dQ = CdT = C, dT + pdV for an ideal gas.

Thus, pdv = ﬁvz‘-st\deT
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2141

or

n |k

_g_d_‘_{_ dr or, ﬁ}nV«i—constant- T
14 a

Using T= I, when Ve V), weget, I'= T0+§—ln-¥-
0

For a Vander Waal gas
a
+=—={{(V-b)= RT

The entropy change along an isotherm can be calculated from

V2

-J ()

Y

It follows from (2.129) that
sy _fepy | R
) - (2] - 5
assuming a, b to be known constants.

2
Thus A.SsRInvl_b
V.1, % v,
Weuse,AS-de'(VT) L) d'f+f x dv
aT v,
T, Y z

1

C,dr V,-b
f fV de=C1n~—+R111V 5

assuming Cy,, 4, b to be known constants.

2,142 We can take S0 as T— 0 Then

T,
2143 AS - deT f’"(“”’nd:r- mb (Ty - T,) + maln =2

T K
T 12 are Lar?
S-fCT faT dr 3aT
0

T,

237
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2144 Here T= aS" or §= (;II)

2.145

2.146

2147

i
"

-1

Then C= T—l-T = S
n gt n
Clearly C< if n<0.
We know, 7 A C>0
5-5, f . enk
assuming € to be a known constant, 7o
S -5,
Then  T= Tgexp ( c ﬁ) €<0
@ __a > S
TZ
Ti
() = | Cdl'= aln T
2
TI
(€) W= AQ~AU - a]nT +C (T -T,)
2
Since for an ideal gas C, is constant 74 Q
v T
and AU = Cy(T,-T)) So.1o SyTo
{U does not depend on V)
{a) We have from the definition Y
Q= f TdS = area under the curve
‘
Q1= To (31‘59) QZ SI, !
. 1
Q2=5(T0+T1){51”50) 5>
d
T,
Thus, using T, = *;":2‘, LK So,7o
141
=1*TO+T151" +n=n.—1
N 2T, 2 " 2n A Q:
1 ¥
(b) Here @, = 5 (5, -S)(T,+ Ty
Q= T,(5; -5y \ <
. 2T, To-T, n-1 S0, Ty ‘LQJZ S
n= -Ti+Tong—T1=n+1 > S
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In this case, called free expansion no work is done and no heat is exchanged. So internal
energy must remain unchanged U= U, For an ideal gas this implies constant temperature

T; = T; The process is irreversible but the entropy change can be calculated by considering

a reversible isothermal process. Then, as before
v,

T
Asaf-‘f%sfﬁ‘;lu vRInn = 201 J/K
Vi

The process consists of two parts. The first part is free expansion in which U, = U, The

second part is adiabatic compression in whick work done results in change of internal

energy. Obviously,

Ve

0= UF—-Uf-i-fpdV, V=2V,
v
)

Now in the first part p, = %— Pe Vp= 2V, because there is no change of temperature.

In the second part, p V= % P2V = 277 PV

Vn Yo
2V (2 LT
pdV = —-—dV = yi-v
2V, 2V, ’
) wy4l y-1
- y-1 v -t + i 277 _1_ _(2 -1
2" p, VIV, . o1 RT
Thus AU= Up-U,; = fm{‘?—(z*"-n
F i y-1

The entropy change AS = AS, + AS);
AS;= RIn2 and AS; = 0 as the process is reversible adiabatic. Thus AS = Rln 2.

In all adiabatic processes
Quw Ui-U;+A= 0
by virtue of the first law of thermodynamics. Thus,
Uf = D:' “"'A
v
For a slow process, A' = f pdV where for a quasistatic adiabatic process pV' = constant.
VO
On the other hand for a fast process the external work done is A" <A’ In fact A" = 0
for free expansion. Thus U’y (stow) <U", (fast)

Since U depends on temperature only, T'f <T
Consequently, p”; > p';
(From the ideal gas equation pV= RT)
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2151

2152

2153

2.154

Since the temperature is the same, the required entropy change can be calculated by con-
sidering isothermal cxpansion of the gas in either parts into the whole vessel.
Vi+V,

V,+ V.
Thus AS = AS,+ AS;= v, RIn V
2

lVl 2+v2Rln

1+n

= v Rin{l+n)+v,RIn = 51J/K

lete, = speciﬁc heat of copper specific heat of water = ¢,
974273

eymydl m,c,dTl 370
Then AS-f f = Mm,c,in = 280 -myc,In—— T,

T+273

T, is found from
280 mycy +370m, ¢,
Cz My +myCy
using = 03%1/g °K, ¢y = 4181/g°K,
Tym 300°K and AS = 28-4-24-5« 39]/°K

For an ideal gas the intemal encrgy depends on temperature only. We can consider the
process in question to be one of simultaneous free expansion. Then the total energy
U= U, + U, Since

C2m2 (TO—280)- my Ci (370_1.0) or TD"

T, +T,
2
entropy change is obtained by considering isochoric processes because in effect, the gas

remains confined to its vessel.

Uy=C, Ty, Uy= C, T, U= 2C,, and (T, +T,)/ 2 is the final temperature, The

(T, + )2
Cydl (T,+ T
f fc"r’c" 4T, T,
(1"4-1')/2
Since (T, + T = (T~ T +4T,T,, A5>0

(a) Each atom has a probability —12~ to be in either campartment. Thus
p=27

(b) Typical atomic velocity at room temperature is.. 10° cm/s so it takes an atom

1073 sec to cross the vessel. This is the relevant time scale for our problem. Let

T=10"% sec, then in time ¢ there will be £/T crossing or arrangements of the atoms. This
will be large enough to produce the given arrangement if

Ly-n Init/x

~ 7
~ 1 or N.o ) 5
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The statistical weight is

N 10x9x8x7Tx6

C - L _J
N2 N/Z!g! Bx4x3Ix2

= 252

‘The probability distribution is
Ne 277 = 252%x27% = 246 %

The probabilites that the haif A contains n molecules is
N N! -N
Nc' x 2 AT =T e 2
The probability of one molecule being confined to the marked volume is

-
p"Vo

We can choose this molecuie in many (N.) ways. The probability that » molecules get
1
confined to the marked volume is cearly
NC‘P"(]- "P)N-” n.w H)’P (1 P)N—n
In s sphere of diameter d there are

3
N= E—gmno molecules

whete n, = Loschmidt’s number = No. of molecules per unit volume (1 cc) under NTP.

The relative fluctuation in this number is

N YN L
6 \7°
or -——a—dano or & 5 Of ds[ 5 ) = 0-41 pm
n TN AN Ny

The average number of molecules in this sphere is -% = 10

For a monoatomic gas Cy= %R per mote

The entropy change in the process is
To+ AT

AS* S—Sgﬁf Cvg* E.Rlﬂ( ;Z-)

TQ
Now from the Boltzmann equation
S=klnQ

w
‘A 3:6)‘1023

Q _s-sor, (1,807 _(;,.1)? o 1ol 12t
—Q—o- e (1+Tﬂ (1+300) 107 x 10

Thus the statistical weight increases by this factor.
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2.5 LIQUIDS. CAPILLARY EFFECTS

2.160 1 1) 4a
@) dp=a (d/z * 4/2) rl
_ 4x490x 10‘3 N

— 5= 1307 x 10° ..15,,, 13 atmosphere
15x10 m? m?

(b) The soap bubble has two surfuces

1 Sa
5 b= 2“(:1/2*4/2) d
- 2281073 = 12x 1072 atomsphere.
3x10

2.161 The pressure just inside the hole will be less than the outside pressure by 4 a/d. This can
support a height i of Hg where

4o 4ct
pgh= ril h= ogd
4% 490 x 103 200

- - = 21 m of H
136 x10°x98x70x 10°% 136x70 &

2.162 By Boyle’s law

3
2a
or Po 1—2-)-—;—7;2-1)
1 ni 2
Thus o= gPod 1- " n“-1)

2.163 The pressure has terms due to hydrostatic pressure and capillarity and they add

4o
P~p0+psh+"3-

1. 5x98x10° ,Ax73x10° 3
10° 4x10°°

10'5) atoms = 2:22 atom.

2.164 By Boyle’s law

(po+hgp+i})%fn (p0+%)%n3da
or [hgp - po - )] = 507 - 1)

or h= [Pg o -1)+ %1" (n*-1) ] /g p = 498 meter of water



2.165 Clearly

i 1
Ahrpg= 4alcesB§(d1~d2)

4ajeos 8)(d, - d,)
d,d, pg

2.166 In a capillary with diameter d = (-5 mm water
will rise to a height

2o 4o

pgr pgd
___4x1x107°

10°x 98 x 05 x 10>

Since this is greater than the height

{ = 25 mm) of the fube, a meniscus of radius
R will be formed at the top of the tube, where

_ 20 2x73x10"3
PER  10°x98x25x103

11 mm

= 59-6 mm

R

~ (-6 mm

2.167

bbby

T :31““‘,'*‘.‘

1‘\& ‘{l) 1;

“;a“,ut:'

i TS
i

11
[

b
T

TTUERE

\
i
|
i

§
) )
}i
o

Initially the pressure of air in the cppillary is p, and it’s length is . When submerged

. . o .
under water, the pressurc of air in the portion above water must be p, + 4—, since the

{evel of water inside the capillary is the same as the level outside. Thus by Boyle’s law

4
(p0+7})(1.—x)-p01

ég(l-x)= X of x=
* d Po B pod
14—
o
2.168 We have by Boyle’s law
(po~pgh+ﬁff—3§ (t-#)= pol
or dacos® h+P0h
Poh d
Hence, o= (pgh+l_h)4cose

2.169

18

E ()= %(di-dﬁ)hxpgxg-n@mdl}ah

Minimising £ we get
da

Jt e o o
pg (dy - dy)

6 cm

Suppose the liquid rises to a beight k. Then the total energy of the liguid in the capillary
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2170 Let h be the height of the water level at a

217

2172

distance x from the edge. Then the total energy
of water in the wedge above the level outside is.

E=fxém-dx-h-pg%uZIdx-h-acoso

mfdx%xpgﬁqn(hz——ZMk)

xpgde
2
1 2acos0 40 cos® 0 4
= § deoxpgd h- - -
f 51 PE ‘I’[( xpgbtp) xzngza‘pz}

2o cos 0

From the equation of continuity

2
%dz-v= _:[c_(z_i ‘V or V=n*w

This is minimun when fi =

4in
We then apply Bernoulli’s theorem

P—+—1—v2+<1>= constant
P2

The pressure p differs from the atmospheric pressure by capillary effects. At the upper
section
20
Pepot g
neglecting the curvature in the vertical plane. Thus,

P+2a p+2nu

°Td 1 0T d

taViegle — " 4
2 & P

4a
of vaVZglum(nn.-l)

nt-1

Finaliy, the liquid coming out per second is,

4
:%wf‘V/zﬂ"*%m—i)

4
n -1
The radius of curvature of the drop is R at the upper end of the drop and R, at the lower

4
HV2

1
2

2a

end. Then the pressurc inside the drop is py + %
1

at the top end and p, + %—? at the bottom
2

end. Hence

Jel 2, 2a®-R)
pﬂ I"’1 p‘} Rz pg R;LRZ pé

To a first approximation Ry e R, e g— so Ry~Ry= —é—p gh */a. = 020 mm

if h=23mm, a= 73mN/m
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2.173 We must first calculate the pressure difference inside the film from that outside. This is

2.174

2.175

2176

p- a(wl-+i]. )

Here 2r, jcos O |= A and r, .. - R the radius

of the tablet and can be neglected. Thus the
total force exerted by mercury drop on the upper

glass plate is
2R« cos 6

h
We should put i/ n for /i because the tablet is compresed n times. Then since Hg is nearly,
incompressible, 7R /i = constants so R - RV# . Thus,
2nR*alcos 0] 2
S
Part of the force is needed to keep the Hg in the shape of a table rather than in the shape
of infinitely thin sheet. This part can be calculated being putting # = 1 above. Thus
2:{R2a§c050.| . 2nR% | cos Bknz

typicaily

total force =

mE h h
2
m23tR o fcos 6] 2_1y o o
or m he {(n"-1) = -Tkg
The pressure inside the film is less than that outside by an amount o }.*_L where

o 2
r, and r, are the principal radii of curvature of the meniscus. One of these is small being
given by hw 2r,cosD while the other is large and will be ignored. Then
- 2Acos 0

F A o where A = area of the water film between the plates,
Now A= -% 50 F= E-"-;;g— when 0 (the angle of contact) = 0
p
This s analogous to the previous problem except that ; A = nR :
2
So Fu 228 g6 kN N

The energy of the liquid between the plates is
E= Idhpg-g-w2alhu %pgldhz-n?.ulh

2
1 2a\ 247
= —pgld|h-=—=| -
2P8 ( pgd) pgd

This encrgy is minimum when, /i =

24’1
pgd
The force of attraction between the plates can be obtained from this as
-3E 2
F= T - - zadi {minus sign means the force is aliractive.)

od pg

the minimum potential enesgy is then £ =

Thus F= wi‘—'ig'—. 13N
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2177 Suppose the radius of the bubble is x at some instant. Then the pressure inside is
Pot -4;9-. The flow through the capillary is by Poiseuille’s equation,

art . S Y -3
8nix dt

4
Integrating x{ﬂ? t= x(R* - x*) where we have used the fact that t = 0 where x = R.

This gives £ = 20!

7— a8 the life time of the bubble cormresponding to x = 0
or

2.178 If tbe liquid rises to a height A, the energy of the liquid column becomes
1 : 2ol
E=pgnrh- -—-2:trha~-~ alrh-2-=) - &=
PE pg ( g) P g

s i s L] . .
This is minimum when r = %—g—- and that is relevant height to which water must rise,

2na’
At this point, E .=~
Pg

2
a .
must have been liberated.

Since £ = 0 in the absence of surface tension a heat () =

2179 (a) The free energy per unit azea being o,
Funad?=3ul
{(b) F= 2xad? because the soap bubble has two surfaces. Substitution gives

F = 10 nJ
2.180 When two mercury drops each of diameter d merge, the resulting drop has diameter d;
where %dfa g—dax.? o, dym 2134

The increase in free energy is
AF= 72%%d%q-2nd am 2rd*a (277 ~1) = - 143 1]
2181 Work must be done to stretch the soap film and compress the air inside. The former is

simply 2 a x 4nR%= 8xR 2(1, there being two sides of the film. To get the latter we
note that the compression is isothermal and work done is

V=V
fpdV where Vyp,= (P“+4R ) V, V= 43 3
LY L, A
or Va po,p P°+R

and minus sign is needed becaue we are calculating work done on the system. Thus since
PV remains constants, the work done is

VO
Vin-L= pVin &
P v P Py

So A’=8nR2a+pV1n£—~
Po
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When heat is given lo a soap bubble the temperature of the air inside rises and the bubble
expands but unless the bubble bursts, the amount of air inside does not change. Further
we shall neglect the variation of the surface tensionp with temperature. Then from the gas
equations
4ul\dn
Po+ %;-*) EY P = vRT, v= Constant

Differentiating

(p0+ 8—“)4nr2dr= vRdT
3r

or @V = dnridre B4

+8a

Pot 3y

Now from the first law

& Q= vCdl vcvdn—"—@—‘;—i.(p“ﬁ)

L 3e r
Po*7y,
ot
Po*r—
or C=Cy+R ) 8
Po3y
3R
using C,=Cy+R, C= CP+--—ﬂ*§—;0~;ﬁ
i+
8o

Consider an infinitesimal Carnot cycle with isothenns at T - dT and T. Let A be the work
done during the cycle. Then A

A= [a(T~dl)-a(l)]|do= -—%%d]‘&c
Where &0 is the change in the area of film

(we are considering only one surface).

T-d7

Then n= A _dr by Camot therom.
Q, T

do T
or ———“ deTéG-— ar or = —Té—q- 466\ ; “0‘
gdo T 4 ar 5 >

As before we can calculate the heat required. It, is taking into account two sides of the
soap film

da
By = ——T:},*i.*écst

Thus A.S'zggz-Zig—ﬁo

Now AF =20d0c so, AU= AF+TAS-2(0—T%)6O
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2.6

2185

2.186

2187

2.188

2.189

PHASE TRANSFORMATIONS

The condensation takes place at constant pressure and temperature and the work done is
pAV
where AV is the volume of the condensed vapour in the vapour phase. It is

Am
pPAV = i RT = 120:6]
where M = 18 gm is the molecular weight of water.

The specific volume of water {the liquid) will be written as V', Since V', > > V", most of
the weight is due to water. Thus if #r, is mass of the Hquid and m, that of the vapour then

me=m+m,
VeamViemV, or VemV=m (V| ,-V)
V-mV, ) .
Se m,= VoV 20 gm in the present case. {ts volume is m, V', = 1-01
vV

The volume of the condensed vapour was originally V-V at temperature I'= 373 K.

Its mass will be given by
Mp(V, -

p(Vy-V)= %RT or m= Mp(Vo-¥)

T = 2gm where p= atimospheric pressure

We let V';= specific volume of liquid. V' = N V', = specific volume of vapour.
Let V= Original volume of the vapour. Then

Y omime Vo e
MRT m;+m, NV, or (m, + Nm) V',
1 |4 mV, n-1
So WN-1)mV = V(l—n)sn(n—l) Or 1= Von ™t NT1

In the case when the final volume of the substance corresponds to the midpoint of a
herizontal portion of the isothermal line in the p, v diagram, the final volume must be

vV
(1+N) *2~I per unit mass of the substance. Of this the volume of the Hquid is V', /2 per unit

total mass of the substance.
1
n= 1+N
From the first law of thermodynamics
AU+A= Q= mg

where g is the specific latent heat of vaporization

Now A=p(vaV’l)m=-m%

Thus AUmm(q—%%')

For water this gives = 208 x 10° Joules.

Thus
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Some of the heat used in heating water to the boiling temperature
T= 100°C = 373 K The remaining heat
= emcAT
(c = specific heat of water, AT = 100 K) is used to create vapour. If the piston rises to
& height 1t then the volume of vapour will be ~ sh{neglecting water). Its mass will be

Py Sh PoSh Mg
®T x M and heat of vapourization will be RT To this must be added the work

done in creating the saturated vapour = p, sh. Thus
Q—chT-peSh(l-rg%{) or h= LomeAl | 20 cm

R M
pﬂs(l + R’;)
me (T - Ty

A quantity —-—;—-——— of saturated vapour must condense to heat the water to boiling

point T= 373°K
{Here c = specific heat of water, T, = 295 K = initial water temperature).

The work done in lowering the piston will then be

me(T~To) RT
p M =257,

since work done per unit mass of the condensed vapour is pV = %

m

—RT
. P2a P da M 4RT
Given AP = "‘S;“;‘-"" '"6:)(“&-"* T}pw- nmv"; Tpv
4doM
or d=
p RTn

For water o= 73 dynes/cm, M = 18gm, p, = gm/cc, T= 300K, and with iy~ 0-01, we
get
dm 02um

In equilibrium the number of "liquid" molecules evaporoting must equals the number of
"vapour" molecules condensing. By kinetic theory, this number is

x}-n<v> x}—nx \/gfm{
n 4 K 4 am

1/ kT - kT“/ m
= MXYXNX Txm nn ""_“znh
- -\/,,_5_4__ : 2,
=NPV 5. RT 0-35 g/cm” 8.

where p, is atmospheric pressure and T= 373K and M = molecular weight of water,

Its mass is
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2194 Here we must assume that p is also the rate 2t which the tungsten filament loses mass
when in an atmosphere of its own vapour at this temperature and that 1 (of the previous

problem) =~ 1. Then
p=p VM = 00 nPa

M
from the previous problem where p = pressure of the saturated vapour.

2.195 From the Vander Waals equation
RT a
P= v vz
where V= Vplume of one gm mole of the substances.

For water V= 18 c.c. per mole = 1-8 x 107 Zitre per mole

litre?

a = 547 atmos * 3

mole
If molecutar attraction vanished the equation will be
. RT_
P=v_e
for the same specific volume. Thus

Apw o 34T

4 4
= - 3 i
Vi TE%1g x 10" atmos =~ 1-7 x 10" atmos

2.196 The internal pressure being -5—2-, the work done in condensation is

v
*
/] a a a
f Vzde VI-VgNVI
¥,

i
This by assumption is Mg, M being the molecular weight and V), V, being the molar
volumes of the liquid and gas. .

a Mg
Th e -
us P, V,z 1 Pq

where p is the density of the liquid. For water p; m 33 x 10" atm

2.197 The Vandar Waal’s equation can be written as (for one mole)
RT a

.P(V) - V- b - ;f
) Fpy
At the critical point ( aV) and ( 7| vanish, Thus
r v,
- RT + 2a or RT  2a
V-b V°  V-bF V°

2RT 6a or RT - Eﬁ
V- V¥ (v-bp V*
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Solving these simultancously we get on division
2
V-b= 3 V, V=3bwV,,

This is the critical molar volume. Putting this back

R 'TCr _ 212 T - 80
462 2150 7 0T 27R
RTc a 4a a a
Finall - o - - -
Y Per™ Vee—b VI~ 375% 95% 2757
Po, Ve,  as9b 3
From these we see that = = =
RT, 8a/21b 8
Pe, as216® 1
RT, 8a/27b 8b
T, .
Thus b= RCr Q082304 b2 itce/mol
8P, 73x8
(RT, Cr)2 _ bda atm-fitre®

27 2
= e O a= -{;;i(RTCr) /P = 359

and
P Cr 27

(mo!)2

Specific volume is molar volume divided by molecular weight. Thus

v - e 3RTc, _ 3x082xS62lire |, - cc
CP" - - re— 71
M SMp., 8 x 78 x47 g
(p+—“;)(v,,,-b)=xr
Vi
. a
i “‘?z Vm_b 8 T
or X [ J——
PCr VMCr 3TCZ'J'
or T+ XVl §-1:
PaVh Vucr) 37
14
where ,n;a,!i,, V= ,,..z'_,t.,,.[
Cr VMCr TCr
or SR £1 i VO \ DU AU A Y W A
V.‘z{ 3 3 ' V2 3‘ 3
1 3 1 3
When = 12 and v-"i-,t-»gx24xg-=~2~

(2) The ciritical Volume V,,, is the maximum volume in the liquid phase and the mimimum
volume in the gascous. Thus
1000
Viax ™ g

x 3 x 030 litre = 5 litre
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2.202

2.203

2.204

2.205

(b) The critical pressure is the maximum possible pressure in the vapour phase in equilibrium
with liquid phase. Thus
a 547
Proax ™ 2™ o .
27 h 2T %03 x-03

= 225atmosphere

; _8a_8 36
&= TR ™ 27 % 043 = 082
M4

Por™ 35 ™ 3543

- 304K

gm/cc. = 0-34 gm/c.c.

The vessel is such that either vapour or liguid of mass m occupies it at critical point. Then
its volume will be
V. = '@"V - .‘?.’.RTC'..@..
G MM g Per M

The corresponding volume in liquid phase at room temperature is

y==
P

where p = density of liquid ether at room tmeperature. Thus

8 M
= __}_/_..= __.E_C_"_'_,, 254
Voo 3RIgp

using the given data (and p = 720gm per litre)
We apply the relation (Tw constant)

r§ as-§ dU+_<f pdV

to the cycle 1234531, P A

Here § dS-»f dU=0
q

So 45 pdV=0

This implics that the areas I and If are equal. 7 3
This reasoning is inapplicable to the cycle 1231,
for exampte. This cycle is irmeversible because
it involves the irreversible transition from a 2

single phase to a two-phase state at the point 3. >\

When a portion of supercool water turns into ice some heat is liberated, which should
heat it upto ice point. Neglecting the variation of specific heat of watcr, -the fraction of
water turning inot ice is clearly

el
f==02s

where ¢ = specific heat of water and g = latent heat of fusion of ice, Clearly
f=1atr=-80C
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2.206 From the Claussius-Clapeyron (C-C)equations

‘g_rm . T (Vz - V'l
dp 9z
qy5is the specific latent heat absorbed in 1 — 2 (1 = solid, 2 = liquid)

V.-V,
AT = MAP- __'273x~091xlatmxcm3xl(

dy 333 joule

5 105—1‘—T—x 10~ %m?

atm X cm m

0y E -] - l B e
Joule Joule 107", a1 0075 K

2207 Here 1 = liquid, 2 = Steam
rw,.-v,
ATl = AP
412

12 AT 2250 09 ~3 3, 3
or V', T AP = 373 X33 % x107"m/g= 1-Tm'/kg
2.208 From C-C equations

dp b I :F:

Assuming the saturated vapour to be ideal gas

1 Mg
v RT,Thus Ap= RI? pAT
Mg .
and P pyll +RT2 ATlx 304 atmosphere

2.209 From C-C equation, neglecting the voolume of the liquid

d q M
:i% TVL'Z EI%P: (g = qy5)

o dp _ Mgdl
p RrT
m ME
Now pV = —M_RT of m= for a perfect gas
So dm dp_dT (V is Const = specific volume)
m p T

Mg_\T_ (18x2250 \ 15
"(Rr“"):r (83)(373 1) A%
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2.210 From C-C equation

LA Mg,
daI TV, R7T?

Integrating inp= constant - ‘%‘r—%

Mg(i 1
So 4 PanP[ R (To T)]
This is reasonable for {T'~ T} << T, and far below critical temperature.

2.211 As before (2.206) the lowering of melting point is given by
AT = — TAY

P

The superheated ice will then melt in part. The fraction that will melt is
. eT AV’

p =~ 03

2.212 (a) The equations of the transition lines are

logp= 905~ %%: Solid gas

= 678 -~ "1"%%9" Liquid gas

At the tripie point they intersect. Thus
450 490

227=m — or T, = o—== 216K

T, v =227

corresponding p,, is 5.14 atmosphere.

In the formula log p= a --;?:, we compare b with the corresponding term in the equation
in 2.210. Then

So, 2303 M4

Inp=ax2303 -~ R

23036
T

2:303 x 1800 x 8-31
Dsublimation ™ 44

or, = 783 I/gm

2-303 x 1310 x 831

i gas = = = 570J/gm

Finally g iy iguig= 213 3/gm on subtraction

T?.
2213 dl _mq L, g
AS fmc 7 + T, ™ m(c}nT1+T2
3
3 33 2250\ .
= 10 (418§ 283 373 m T2KI/K
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I T2 9y
2.214 AS T1+C111*j_~,~+'172-
333 373 o
- 273*418111283- 856 1/°K

2.215 c = specific heat of copper = O-SQ-Eg—fSuppose all ice does not melt, then

heat rejected = 90 x 0-39 (90 - 0) = 3159

heat gained by ice = 50 x 2:09 x 3 +x x 333

Thus x= 85gm

The hypothesis is correct and final temperature will be T'= 273K
Hence change in entropy of copper piece

273
= mcln 363 - -10J/K.

2.216 (a) Here t, = 60°C. Suppose the final temperature is ¢ °C. Then
heat lost by water = myc (5, - 1)
heat gained by ice = m, g, +m, c{t~ 1), if all ice meits
In this case m, g,, = my, x 418 (60 - 1), for m, = m,

So the final temperature will be 0°C and only some ice will melt.
Then 100 x 4-18 (60} = m’; x 333

m'y = 753 gm = amount of ice that will melt

Finally AS-75-3:-<:;—,:;::;i+100:«:4-18111%;;--;l
m,lqm Tl
AS = T, +mzclnT2
T-1) )

- mzc—l—_;——dnzlnﬁ

T, T,
= myC|2e1-1n=2 = 88I/K

T, T,

(b) If myct,>m, g, then all ice will melt as one can check and the final femperature
can be obfained like this
myc (L~ =myg,+mc(T-T1;)
(my Ty +my Ty) €~ my g = (my +my) cT
myTyem T, - Zidm

or T € w280 K
m, +my

" q T T,
and AS = T, +c[miln1.1-m21n T]- 19 1/K
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mq, I, Mgq,
2.217 AS "T mclnf;+——5;;~——-
where Mg,= m(qzd-c(Tz—-Tl))'

w (02245 + 02564 = 0-48 /K

2.218 When heat dQ is given to the vapour its temperature will change by d7T, pressure by dp
and volume by 4V, it being assumed that the vapour remains saturated.

Then by C-C eguation

dj

ﬁs r]-‘{,,w(v'wm» Vigh or dp= dl
on the other hand, pV’ = RT

M
So PV +V dp= S,
R _g

Hence pdv’ (M .T)dT
finally dQ = Cdl'= dU + pdV’

T _q\.r. q
'CvdT*’(M T)dT C’ di - dT

(CP, Cy refer to unit mass here). Thus

Cw= cp-%
For water C, = Ry L with y= 1-32 and M= 18
y-1 M
So C,= 1:901/gmK
and C= -4131/gm°K = - 74)/moele K

2.219 The required entropy change can be calculated along a process in which the water s
heated from T, to T, and then allowed to evaporate. The entropy change for this is

T, gM
aM
AS= C in__T1+ T,

where g = specific latent heat of vaporization.
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2.7 TRANSPORT PHENOMENA

2.220 {(a) The fraction of gas molecules which traverses distances exceeding the mean free path
without collision is just the probability to traverse the distance s = A without collision.

Thus P= e"‘.i—. 0-37

(b) This probability is
Pu e-l-—-e-za 023
2.221 From the formula
1 — AL Al
== e or Am ——
1 Inn
2.222 (a) let P(f)= probability of no collision in the interval (0, f). Then

Pi+d)=P(r)(1-od)
or %- ~aP(l) or P()m e
where we have used-P(0)= 1
(b) The mean interval between collision is also the mean interval of no collision. Then

2223 @ A= 1 kT
V2xdin \findzp
138 x 10" 2 x 273
T VZR(03Tx10-° Y x 10°
A 62 x10~%
<y > 454

- 62x107%m

s= 136 ns

A= 62x108m
(®) n=136x10*s= 3-8 bours
2.224 The mean distance between molecules is of the order
-3 M
(22-4 x 10 ) (224

14
51 = {5 x10""meters = 3-34x 107" meters
60x 10 6

This is about 18.5 times smaller than the mean free path calculated in 2.223 (a) above.
2.225 We know that the Vander Waal’s constant b is four times the molecular volume. Thus

113
b"4NA“J‘6£d3 or d-{ 3b )

2nN,

273
k
Hence A= ( To ](2EN‘4)




258

2.226

2227

2228

2.229

2230

The volocity of sound in N, is

14 /1P - /Yy RT

P M
50, ..1,;,, \’YRTO - mjzg__._
v \EndzpoNA

M

of, ve=ndp,N, VK‘%

(a) Axlifp<

kT
V2 nd*l
Now - tr 0, ofOis 07 Pa.

T
V2 adl
(b) The corresponding » is obtained by dividing by kT and is 1-84 x 10% per

m = 1-841‘per c.c. and the corresponding mean distance is L

w7
-2
- ~——~—~—l~q~——-——- 1-8x107 m ~ 018 pm.
(0-184)"°  10°
1 1 <y >
@ v- T M<vs . A

= V2 rdn<ws>= 74x10"%s7! (see 2.223)
{t) Total number of collisions is

—1—-nv = 10x10%sem™3

2
Note, the factor %— When two molecules collide we must not count it twice.
1
3) A= —————
@ V2 adin

d is a constant and » is a constant for an isochoric process so A is constant for an isocheric
process.

8RT
V= WT> = 1;\'{71: o ﬁ
A= 1 ﬁa T for an isobaric process.
®) V2 md®p b
- 22g ﬁ . for an isobaric process
» T VT ‘
(a) In an isochoric process A is constant and
vaVT aVpV aVp aVe
(b} A= \/_2____.__.__"1"}.5... must decrease n times in an isothermal process and v must increase
md’p :

n times because <v > is constant in an isothermal process.
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__ N 4

{(a) Aa > VN
12
Thus AV and vaz:-v—;*

But in an adiabatic process (y - -s?-here)

TV = constant so VY3 « constant

or T2 av Y Thus vav™%?
T
Ao~
®) ral
! T
But p{=] = constant or ~ap " or Tap' "
P r
Thus rap Ve p‘m
1 1+l
V> P 2 3y o H o 87
v ——_’L Gv-f(lp P P
{c) AaV
But TV« constant or Va T~ %2
Thus ra T ¥?

T 3
vaTaT

In the polytropic process of index n
PV" = constant, TV™ ! = constant and p>~"T" = constant
(a) AaV

50 Aap V"
1 1 el
V= Ta%upi'i*ﬁ- P
T -t
(¢©) o=, paTi
P
n 1 1
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2233

2234

2235

(a) The number of collisions between the molecules in a unit volume is
1 1 _ 22 vT
SNV m nd"n‘<v>a
27 V7 v?

This remains constant in the poly process pV's = constant
Using (2.122) the molar specific heat for the polytropic process

pV® = constant,

. 1
is Cm R(‘lua 1)

1 1 5 1 11
Thus C=R( _1+4)-R(2 4)- 4R

It can also be written as %R (1+2i)where i= 5

(b) In this case g- constant and so pV "= constant

'1 5 1
f:34) Cm R( _1 2) R("Z"-P'i) 3R

It can also be written as -i(i +1)

We can assume that all molecules, incident on the hole, lezk out. Then,

~dN= -d(nV)= %n<v>Sdt

dnm e — &

o /S <v > T
; -t/ 8RT
Integrating n=nye "". Hence <v>= Y

If the temperature of the compartment 2 is v times more than that of compartment 1, it
must contain % times less number of molecules since pressure must be the same when
the big hole is open. If M = mass of the gas in 1 than the mass of the gas in 2 must be
%. So immediately after the big hole is closed.

o M o M

m "

where m= mass of each molecule and n? , ng are concenirations in 1 and 2. After the
big hole is closed the pressures will differ and concentration will become »; and n, where

M
= m(l +1)
On the other hand
m <Yy > > e = V’an
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Thus m L+ V)= ST (e ()
1+
o Rl o~
2236 We know

1 i 1
- Sepshpm Sy mavT
1 3 P 3 \Endz

Thus v} changing o times implies T changing otimes.
On the other hand

D--—<v>)&- —'\/ =
Zatd

Thus D changing 8 times means 2"}- changing § times
3
So p must change 2 times

B

2.237 Dai’?mvﬁ, n=VT

{a) D will increase n times
n will remain constant if T is constant

g2 32
(PV)
(b) Da ’

vas/z
navpV

Thus D will increase n>? times, 7 will increase n 172 times, if p is constant
2238 paVVT, naVvT

In an adiabatic process
TV' ! constant, or T V' =

Now V is decreased % times, Thus

3 '"i'x
paviia (i) - (l)
n n

noofV? = ;) - 3

; ; vs,.
So D decreases n*times and 1 increase n” "limes.

2.239 (3) Da VVT a VpV3

Thus D remains constant in the process pV?’ = constant
So polytropic index n= 3

®) naVT aVpV
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So 7 remains constant in the 1sothermal process
pV= constant, n= 1, here

(c) Heat conductivity k = 1 Cy,

and C, is a constant for the ideal gas

Thus n= 1 here aiso,
AL BRT_ m 2. fmiT 1
2.240 T 3 am V2 xg® 3 © &
va
o de(2Y (mEnS 2 (4x831 x273x 107
In b 3x189 x° x 36 x 10%
2 4
~0f__2 4x831x273 _
10 (3x18‘9 ( % 36 ) = 0178 am
1241 lcn-;-ﬂr:-?\.pcv
8kT 1 Cy

1
- ——— N
3 % V2 ndin M

o
C\ is the specific heat capacity which is -}EV) Now C, is the same for all monoatomic

gases such as He and A. Thus

1
Ko
VM d*
,/-"' 2
or 5’35-8-7-7_.-7Md -\f”
*a M, dy
dy 87
—m \f == = 1-658 m 1-7
4, " VVio

2.242 In this case

R
Mgy e

3
or Nl-%-%ﬁ— 4xne o NI-Z—EERER—

To decrease Ny, »  times 1} must be decreased » times. Now 1) does not depend on pressure

until the pressure is so low that the mean free path equals, say, %AR Then the mean free

path is fixed and 1 decreases with pressure. The mean free path cquals -;—AR when
N
V2 nd? ng

= AR (n,= concentration)
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2.244

2.245

2.246
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Corresponding pressure is p, fZ__IQ_
*" xd’AR
The sought pressure is n times less
V2 kT 10-%
- e 7O % e = (71 P
P= xd®nAR 10" % x10°2 ‘

The answer is qualitative and depends on the choice %AR for the mean free path.

We neglect the moment of inertia of the gas in a shell. Then the moment of friction forces
on a unit length of the cylinder must be a constant as a function of r

deo N/t

So, 2ar N =N, or w(r)= 47”3(’3- 2)
and W= M 1.1 ofr n= M —1—-—1—
axn|i 7 BT I

We consider two adjoining layers. The angular velocity gradient is %)* Sc¢ the moment of

the frictional force is
@

4
= . P L
N fr 2rrdr nry o
0

In the ultrararcficd gas we must determine 7 by taking A = %h. Then

L?.’.‘_Z}_..E 2M
3 2"kr3 xRT P

Loatp\/ 2
50, N 3map 5RT

Take an infinitesimal section of length dx and apply Poiseuilles equation to this. Then

n=

av _ -nd ap
dr = 8n ox
From the formula pV= RT- E”;..
RT
pdv = iv; dm
A
or dm _ _na M pdp

dt VT T8qRT dx
This equation implies that if the flow is isothermal then p g% must be a constant and so

23
I Pi-P l
equals in magnitude.

21

_ na'M !P%"P?I
" 16wRT 1

Thaus,
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2.247 Let T= temperature of the interface.
Then heat flowing from Ieft = heat flowing into right in equilibrium.

(Kl T, x, TZJ

nL,-T T-T, hH o b
Thus, x; = K, OF T'm s
i L 4.5
L b
2.248 'We have
n-T T-T, T,-7,
K = K - ¥
A LA L+l
or using the previcus result
7y T
K A 7,-T,
o T = X
i Ky Ky L+,
Bt S
1 b
2(1,-1y)
xl”i;'(l' ¥ oon-n L+l
or - -K of K= ———-
Lo ox oK L+l Lo h
hh K
2.249 By definition the heat flux (per unit area) is
. 4ar d Wn71,/T,
mede——adr!nTa constant =+ Q@ ]
: x I
Integrating InT= —Inz+InT,
I T,
where T, = temperature at the end x = 0
AN 4 oo ST/T,
So T=1 T, and Q= ]
2.250 Suppose the chunks have temperatures 7, 7, at time ¢ and 7, -dT,, T, +dT, at time
de+r.
)
Then Cidl = Cydly = ““[“‘(TI—Tz)df
Thus dAT= kS i«ri AT dt where AT=T,-T,
e, ¢

A here Lo KS(L 1
Hence AT = (AT) e where "7 ( c + Cz)
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: ar aT
Q=xoi= -AVT S

2, 9T

--3A = , {A = constant )
} Z-A(TS/Z_T;A)
3 1
Thus T = constant -J—;*(Tf/z— Tza/z)
or using T=T7T; atx=10
32 3/2
3/2_ o2 X (032 _ w32 T - xi{T _ ]
T (BT )or(n) 1+l((2‘) 1
23
T, \32
Xip22 -
renae2| (BT
R
K_}“‘/w 1 mnm—%- R 737
37 aM Vand®n M 3324 YMN,

Then from the previous problem

2R (1) -137)
o> d*VM N, I

q= , £= 3 here.

. o (T, +T,)
At this pressure and average temparature = 27°C = 300K = T= 5
A= 1 T

V2 nd? p

The gas is ultrathin and we write A = %l here

= 2330x 10 °m = 233mm>>50mm = |

Then g= x%- K z._%;;_ﬂ

where K= %<v>x%1x%§x;~§~fx%= ﬁi—;l

and 1= o (b

where <v> = §§~Z.We have used T, -1} << 2T here.
M= 2 7 2
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2254 In equilibrium 2nrx ar —A = constant. So T= B—a~Inr
dr 27K

But T= T, when r= R, and T= T,. when r=R,,.

TZ_T}_ r

ill*;—
2 1

]H'ﬁ;

From this we find T= T, +

2.255 In equilibrium 4m 7% x %{— = «A = constant

A 1
T‘B+4mcr

Using T'= T, when r= R, and T'w T, when r=~ R,

T,-T
T= T+ (lmi)

1 _14r &
R, R,
2.256 The heat flux vector is ~ x grad T and its divergence equails w. Thus
virTe 2
K
or -1“?“(1" 19.'{.) = -2 in cylindrical coordinates.
rar ar K
or T-B+Alnr-—-—%r2
Since Tis finite at r= 0, A= 0. Also T'= T, atr= R
W o2
50 B= T°+74"ER
w 2 2
Thus Tw T°+Z£(R -r?)

r here is the distance from the axis of wire (axial radius).

2.257 Here again

viTe ¥
K

So in spherical polar coordinates,
1 _Q_(rzﬂ)“__ - or r2§Z= o3t A
K 3x

r*or or ar
or T= B—-é—-——“irz
r 6x
Again A= 0 and B=i"‘ﬁ+-63f-{—R2

so finally T= T(,+—6%;~(R2—r2)
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ELECTRODYNAMICS

3.1 CONSTANT ELECTRIC FIELD IN VACUUM

2 H‘l2
3.1 F, (for clectorns) = """Lz and F,, = :{‘"2“

4xe,r r
Th Fa (for electrons) = ——T
us smw (107 CIECUONS) ™
F,, dne,ym
- 19 2
- (1602 x 10~ C) - 4x 10"
(9 109) x 6-67x 10 m* [ (kg - s7) x (911 x 10~ * kg)?
x
Similarl Fa (£ ton) _.___wu,‘fz
Hiiar e (IOT PEOION} =
Y F, P 4xeyym
-19 2
S— (1602 x 10~ ¥ C)  1x10%
(9 iﬂg)x6-67xlﬂ”llms/(kg-sz)x (1672 x 10~ T kg)?
.
For Fy= F,

2
N 1. SRR NN vy
4:uzar2 r m

] -1 3 2
_\/667x10 mg(kg §%) aovSme“mC/kg
9x10

3.2 Total number of atoms in the sphere of mass 1 gm = 33%2 x 6023 x 107

6:023 x 107
63-54
Now the charge on the sphere = Total nuclear charge — Total electronic charge

So the total nuclear charge A = x 146 x 107 x 29
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33

34

6023 x 102 —1w_ 29x1 2
©3.54 x 16 x10 =00 4298 x 10 C
Hence force of interaction between these two spheres,
. 2

1 .[43932 107 Ne 9x10°
4xe, 1
fet the balls be deviated by an angle 0, from the vertical when separtion between them
equals x.

Applying Newton’s second law of metion for any one of the sphere, we get,

Fe x10°%x 19348 N = 174 x 10N

TcosOw mg {1
and TsinBw= F, )
From the Eqgs. (1) and (2)
F, !
tan @ = —= 3
mg AN
But from the figure t
]
mneswm{-—w—--%asx<<l {4) !
t
2_(x i
A b : K, Fe
From Egs. (3) and (4) X ’l
2 m
mgx q mgx g
F = or =
© 2 4n eo‘\c2 2!
2ne,mgx
Thus q2 - ———-—%—E—— )

Differentiating Eqn. (5) with respect to time
2reymg dx
dg  ZTCME s adx
24 3G

According to the problem % = v = a/Vx (approach velocity is % )

12
2nre,amg dg 3me,mg , g

S0 ( ] ”3) a "~ xz\/;
dg_3 -‘/2=teomg

Hence,dt 20 B B

Let us choose coordinate axes as shown in the
figure and fix three charges, ¢y, g, and g,

. 1ot e i —
kaving position vectors r;, r, and Fy
respectively.

Now, for the equilibrium of ¢,
— . -
+q,q3{(ry~r3) qyq3(r;-ry)
prp—— = >3 "
fry—~rs] fry~rsl

0
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q9; 9
or, a3k =) 2
|7y =15 |y =rsl
SO o s
because 3. 3. - -i -3'»
|7y -1yl |7y -7y
or, Vo, (Fy-7) = Vg, (7~ F3)
ot ;;-: \[q—z—?l.'*"QI};
$ ]
Vg, +Vg,

Also for the equilibrium of gy,

— — -

93(r3'r1)+‘12{r2"';)
i —— e 3
fry-ril”  frp-7d

= 0

|-l

~;
Oof, q3 =
7-7if
Substituting the value of 75, we get,
~ 919

B Vg Vg

When the charge g, is placed at the centre of dFe

the ring, the wire get stretched and the extra T
tension, produced in the wire, will balance the 4
electric force due to the charge g, Let the @ 9

tension produced in the wire, after placing the /
charge q,, be 7. From Newton’s second law

in projection form F, = mw,,

T8 - — gﬂ(mi-rde).(dmm,

dngy 2 27
or, Tm 9%
Snzsor
Sought field strength
Fel 4
BRIt

= 4-5 kV/m on putting the values.

Let us fix the coordinate system by taking the point of intersection of the diagonals as

the origin and let k be directed normally, emerging from the plane of figure.
Hence the scught field strength :
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E= -1 I xk_ —q I(=i)+xk .
= 43\:(50 (12+x2)3/2+ 47;80 (12+£)3/2 +Q(l,00) 'f'q y_
g ik g I(-[)sxk (01,0)
47‘% (14 °Y7 Amey (12452 N 0
- 2! 21
4:1:80(12+x2)3/2{ 1-2fj ] 4 (l’oo)
- o (0100 4
Thus F= \/z—nsﬁ(12+x2)3/2 x

3.8 From the symmetry of the problem the sought field.

E=dex

where the projection of field strength along
x — axis due to an elemental charge is

dE dgcos® gRcos8dB
T Ane R 4mle R’
o ]

w'l

= gy fco 0d0 —51—
4x°eyR v ® 27 e, R*

3.9 From the symmetry of the condition, it is clear that, the field along the normal will be

Hence

Zero
ie. E,= 0 and E= E,
Now dak, = ——ﬁa——-—;—- cos O
dreg (R°+1°)
But dg= =2 dv and cose**———————!————
- ZJT.R - (R2+12)1/2
Hence dr
ZxR
dx o
= [dE- f i
ZnR dme,(RP+1%)7 g
i 1 z
or £ 43‘580 (12+R2)3/2 - < Z ____...}\k&*
and for {>> R, the ring behaves like a point >
charge, reducing the field to the value, :dE

1 ¢
E 4::%0'1_5
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in

For E_,,, we should bave % 0

So,(£2+R2}3/2~%l(l2+R2)mZ!-0 or 1*+R*-31%=0

R q
Thus I= —=and E__ =
V2 ™" 6V3 n e R ‘
The electric potential at a distance x from the given ring is given by,

g q
dmegx  dme, (RP+ XDV

Hence, the field strength along x-axis (which is the net field strength in ‘our case),

@ x) =

E_._._é?i, q 1 gx
x dx 43t80x2 4?560(821-12)3/2
R\
1+ -1
PER[3
) 2R )
g _:«}_5233“ ]
4me, 8,

LR+

Neglecting the higher power of R/x, as x>> K.
3 qu

ETN

E=

Note : Instead of g (x), we may write E (x) directly using 3.9

From the solution of 3.9, the electric field strength due to ring at a point on its axis
x-axis) at distance x from the centre of ﬂ;c ring is given by :

E(x)=

4me, (R +X )
And from symmetry Eat every point on the axis is directed along the x-axis (Fig.).

Letus consider an element (dx) on thread which
carries the charge (A dx). The electric force
experienced by the element in the field of ring.

A gxdx
dF = (MNdx) E(X) = o
() £2) dme, (RY + X
Thus the sought interaction R >0
0 -~
F= hgxdx ) ________x A (_““' E
4me, (R2 ~t-)c2)3/2 e

0

On integrating we get, F = “-M—*'
dme R
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3.12 (a) The given charge distribution is shown in Fig. The symmetry of this distribution

implies that vector E at the point O is directed to the right, and its magnitude is equal to
the sum of the projection onio the direction of E of vectors dE from elementary charges
dg. The projection of vector dE’ onfo vector E” is

4me, ﬁ% cos @,
where dg= ARdgp= A; Recosqpdy.
Integrating (1) over @ between 0 and 27 we

find the magnitude of the vector E:
Ix

) f 2 A
Ee gwe g oo odo~ de R
1

It should be noted that this integral is evaluated
in the most simple way if we take into account

that <cos” g>= 1/2. Then
2x

dE cos g =

J-cosztpdq)- <coszq3> 2=
0
(b) Take an element § at an azimuthal angle g from the x-axis, the element subtending

an angle 4 @ at the centre,
The elementary ficld at P due to the clement is

dycospdpR

4:ten(x2+R2)
hycospdeR
4n£0(x2+R2)

along SP with components

x { cos O along OF,sin 8 along OS}

X

where cos G =
o2 +R%)7?

2w

The component along OF vanishes on integration asf cospdop=0

]
The component alon OS can be broken into the parts along OX and OY with

MR 2eos pd o
dme, (F+ R
On integration, the part along OY vanishes.

Finally \
S R

A R?
EwE o
U 4e (F+ RV

x { cos ¢ along OX, sing along OY }

g\ 0

-p 2
E = where p= TR
Fodmex =t x

Forx»>>R
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313 (a) It is clear from symmetry considerations that vector E must be directed as shown in
the figure. This shows the way of solving this problem : we must find the component
dE_of the field created by the element dl of the rod, having the charge dg and then

integrate the result over all the elements of the rod. In this case

Adl
—COS O,

1
dE = dEcosaum aneg 7

wherch = 5% is the linear charge density. Let us reduce this equation of the form convenient

for integration. Figure shows that dlcos a= ryda and r,= ;

Consequently,
Aroda
dF .= 1 g - A
4me, dne,r

3 cosada
o
This expression can be casily integrated :

ﬂo
E= A 2fcosadaw A 2 sin a,
dreyr dneyr
0

where o, is the maximum value of the angle o,

Sil\a[}* a/vtzz.}rz
g/2a a q

2 =
dmer V2,2 dreyrVa?e P

Note that in this case also E= —-—--g---i- for r>> a as of the field of a point charge.

Thus, FE=

dmeyr
{t) Let, us consider the clement of length df at a distance / from the centre of the rod,
as shown in the figure. dl
Then field at F due to this clement. L 1 X I % >
hdl el oy P
4x£0(r-—l)§’ ke 7a >
if the element lies on the side, shown in the
Adi
diagram, and df = —————, if it lies on
& dney(r+i)
other side.
a a
Hence E-dewf hdl 2+f hdl 3
dney(r-1) A drey(r+l)
0

. . . .4 o g 1
On integrating and putting A 2 Ve get, E ine, ww(#* az)

For r>>a, £ g
- 4ne0;§
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3.14

315

The problem is reduced to finding £, and E, viz. the projections of Ein Fig, where it is

assumed that A> 0.

Let us start with £, The contribution to E_ from the charge element of the segment dx is
= 4ieolrfxsina (1)

Let us reduce this expression to the form convenient for integration. In our case,

dx = rda/cosa, r= y/cosa. Then

sin o d a.

T 4me,y

integrating this expression over o between
8 and /2, we find

E.= Mg,y
In order to find the projection E, it is
sufficient to recall that 4E, differs from dE,
in that sina in (1) is simply replaced
by cos a.

This gives
dE, = (hcosada)/dneyy and E = A/dme,y.
We have obtained an interesting result :
E = E, independently of y

g —
i.e. £ is oriented at the angle of 45° to the rod. The modulus of £ is

E= VEx2+Ey2=- Kﬁ/4xaﬂy.

{a} Using the solution of 3.14, the net electric field strength at the point O due to straight
parts of the thread equals zero. For the curved part (arc) let us derive a general expression
i.c. let us calculate the field strength at the centre of arc of radius R and linear charge

density A and which subtends angle 0, at the centre.

From the symmetry the sought field strength al

will be directed along the bisector of the angle

8, and is given by /,
+8/2

as
AMRAY) A9 ’
E f 230:,9 anORSiﬂ ) ‘

drey R
-6,2
In our problem 8, = /2, thus the field strength >
due to the turned part at the point - E
V2 )
o 2 which is also the sought result, ar
4menR

(b) Using the solution of 3.14 (a), net field strength at O due to stright parts equals

V2 V2 1 - and is directed vertically down. Now using the solutior of 3.15
dregR} 2ZmeR
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(a), field strength due to the given curved part (semi-circle) at the point O becomes

%};_E and is directed vertically upward. Hence the sought net field strengh becomes
0

Zero.

Given charge distribution on the surface g = a7 is shown in the figure. Symmetry of
this distribution implies that the sought £ at the centre O of the sphere is opposite to @

di=o(2arsin0rd0= {@- 7')2::?' sin0d0=2mar sinfcos 040
Agam from symmetry, field strength due to any ring element dE is also opposite to
@ ie. dE 1| a. Hence

dE = dgrcos
" 4re, (P sin’ % cos” 0)°
o (7 5in” € + r cos® 6)

= :f(Using the result of 3.9)

(Z:tar schosGdQ)rcosG( a)

4:!(80 a
ar
= sin 6 cos®d © < >
2¢g, e
E

E'-fdf:’- CDr [ o costodo
2

— —
ar 2 ar

—
Integrating, we get E= - -éa 3= 3;;

‘We start from two charged spherical balls each of radius R with equal and opposite charge
iy —

densities + p and ~ p. The centre of the balls are at + % and- % respectively so the

. . gl a a s
equation of their surfaces are |r ~ 5] = Ror r- EcosG:R and r 4 -é-cosﬂu R, considering

a to be small. The distance between the two surfaces in the radial direction at angle 8 is
| acos0 | and does not depend on the azimuthal angle. It is seen from the diagram that
the surface of the sphere has in effect a surface density o = o, cos® when

Gy = pa.
Inside any uniformiy charged spherical ball, the field is radial and has the magnitude given
by Gauss’s theorm

4r°E = %’Er3p/ £

- P
or E 3e,

In vector notation, using the fact the V must
be measured from the centre of the ball, we
get, for the present case

E = PR R (I et
E=3el” 2) 380(”2)
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3.19

3.20

—, Op
= wpa/deg, = SEQP
When k'is the unit vector along the polar axis from which 6 is measured.

Let us consider an elemental spherical shell of thickness dr. Thus surface charge density
of the shell o= pdr= (a-r )dr.
Thus using the solution of 3.16, field strength due to this sperical shell

i

gl
dE = -+ dr
g,
Hence the sought field strength

R
- @ aR*
= o § rdr= .-
g 6 g,

i

From the sojution of 3.14 field strength at a perpendicular distance r < R from its left end

i)+ (e)

drmeyr
A
Here e, is a unit vector along radial direction.

Let us consider an elemental surface, dS = dydz = dz{rd6) a figure. Thus

flux of E" {r) over the element dy is given by
A= E-dS = [—"'—(3)+4 A r("e,)]-dr(rde)'?’
0

dxe,r
= —4n80drd9—(ase, 1t )
R 2
AR
Thesoughtﬂux,<1>=-4u£ f f ea..i-g{;,
o 0

If we have taken dS 3 («-z ), then & were %—&
&g

pA

[ol= 75

Hence

Let us consider an c¢lemental surface area as shown in the figure. Then flux of the vector

E through the ¢lemental area,
d®=E-dS= EdS=2E,cosdS (as E11d5)

2q 2qlrdrdd
rd@dr= T T 7]
43u~:0{12+r2)(12 rl)w( ) FETN G I i
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where E, = fs magnitude of

4ne (1% +1%)
field strength duc to any point charge at the

point of location of considered elemental area.
R 2x

2qlf rdr f
Thus & dne (r2+12)3/2 de
0

1]

R

2gix2= f rdr 4]y !

4ne, PP+ g VELR?
o

It can also be solved by considering a ring element or by using solid angle.

Let us consider a ring element of radius x and thickness dx, as shown in the figure. Now,
flux over the comsidered element,

d®=E-dS= E, dS cos 0

ButfE = ;_r from Gauss’s theorem,

£y

r
and dSw= 2mxdr , cos 0w -;0

r r
Thus db= F-2nxdel= E——Qandx
g r 3e
Hence sought flux
22
R -ry .
2nxpr, 2apry (R -7 Tpr
®- pof’tdx J2zen®on) SLY7
€y 3, 2 3¢,
0

A
2eg (X +17/4)

The fickd at P due {0 the threads at A and B are both of magnitude 75

and directed along AP and BP. The resultant is along OF with
2hcos® Ax Ip
2 nzy n+ nz/z)m TE, o+ 12/4)

A
+~{i 2---~£---\/;+l
MEG| Xk ~

=

2Vx
A

nso{(\/;-z:[;)z +1]

This is maximum when x = /2 and then E= £ =

)
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3.23 Take a section of the cylinder perpendicular to its axis through the point where the electric

3.24

3.25

ficld is to be calculated. (All points on the axis are equivalent.) Consider an element §
with azimuthal angle @. The length of the element is Rdg, R being the radius of cross

section of the cylinder. The element itself is a4 section of an infinite strip. The electric field
at O duc to this strip is

0, cos ¢ (R dp) Rd(P
W along SO y. R
This can be resolved into 0 ¢ x
9 cos9d @ fcos @ along OX towards O >
2meg { sin ¢ along YO ‘jo
On integration the component along YO dE

vanishes. What remains is

25

2
dyco8” @ dy O, . . )
f LT =3 e along XO i.c. along the direction ¢ = n,

0

Since the field is axisymmetric (as the fieid
A h iy Thntped fiamenY), we condlude
that the flux through the sphere of radius R is
equal to the flux through the lateral surface of
a cylinder having the same radius and the height
2R, as arranged in the figure. R

— -
Now, CI>-§E'dS*E,S

But E = %

Thus & = %sa %ZER'QR- 4maR

(a) Let us consider a sphere of radius r < R then charge, inclosed by the considered sphere,

qmlmdafmtrzdrprdnrzpo(l—-;—{)dr 49
0 0
Now, applying Gauss’ theorem,
E 4n = M, {where E, is the projection of electric field along the radial line.)

g
r

P 4nr2(1-f-)dr
£y A R

2
or, E-"?"Q”[rzué-’:—l
T 3e,
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And for a poind. outside the sphere r>R.
R

e

2 r . .
Vivctosed ™ f anrdrp, (1 ——-R;-](as there is no charge outside the ball)
0

Again from Gauss’ theorem,

F
r
4xr2drpﬂ(1‘“ﬁ)
E,43'cr2s:
&
0

Po [R® R? 90R3
01’, =2——3—_—4—I—{— __-:—*—.-5——-.
r ey 12rig,

(b) As-magnitude of clectric field decreases with increasing r for r > R, ficld wiil be
maximum for r <R, Now, for E, to be maximum,

d{ 3r 3r 2R

a‘r(r-4R)‘ 0 or 1"2R= 0 or r=r,= 3
PoR

Hence E <= T
{i]

Let the charge carried by the sphere be g, then using Gauss’ theorem for a spherical surface
having radius r > R, we can write.

r

Ednr= inclosed i+}~* Zanrtdr
£y g B T
R

On integrating we gef,

2 2
Fdnr= (q—2:taR)+4nar
&y 2¢,

The intensity £ does not depend on r when
the experession in the parentheses is equal to
zero. Hence

vl o
g=27xaR and E= —2—80

Tet us consider a spherical layer of radius » and thickness dr, having its centre coinciding
with the centre of the system. Then using Gauss’ theorem for this surface,

r

Ednf= 4w:maz=fpdV
’ £ £y

0

3
- th poe *T4nrdr
80 0
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3.28

3.29

After integration

E dnr= m[l-e'“”]
g

Po war

or, E, = 1we %"
3ear2[ !

r
Now when ar’ <<1, E ~ Po?
. 3¢
Po

And when ar3>>1, E, - 5
Jeqar

Using Gauss theorem we can easily show that the electric field strength within a uniformly
5 B [P}
charged sphere is £ = ( )r
3g,

The cavity, in our problem, may be considered
as the superposition of two balls, one with the
charge density p and the other with ~ p.

Let P be a point inside the cavity such that its
position vector with respect to the centre of

cavity be 7. and with respect to the centre of
the ball r.. Then from the principle of

superposition, field inside the cavity, at an

arbitrary point P,

——
Note : Obtained expression for £ shows that it is valid regardiess of the ratio between
the radii of the sphere and the distance between their centres.

Let us consider a cylinderical Gaussian surface of radius r and height / inside an infinitely
long charged cylinder with charge density p. Now from Gauss theorem :

E, 2mrh= Jrciod

£ .
(where E, is the field inside the cylinder at a @ A
,,i__

distance r from its #xis.)

P
2 -
of, E 2arh= prrih or E = BT 'ﬁ]c&\“m
|

gy 2¢,

Now, using the method of 3.28 field at a point

P, inside the cavity, is e 77—

Y

--Z-—f-/

[

P FuF o« Py B>
E E*‘*"E_“ 2£U{r+ f_) 250“
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3.3 The arrangement of the rings are as shown in the figure. Now, potential at the point 1,
@, = polential at 1 due to the ring 1 + potential at 1 due to the ring 2.

.4 ., -4
dreyR 4:1::2{;,(.Rz~1»a2)!',2

Similarly, the potential at point 2, .;.q' _ (1
@, — . q
2 4megR 4:':£0(i'22+n:12)1/2 R a R
Hence, the sought potential difference, 1‘ 2

q + -9
dnegR  dme (R +a®)?

G -@y= Apw 2

q 1

- 1 —-—
215 R
o V1 +@/RP

3.31 We know from Gauss theorem that the electric field due to an infinietly long straight wire,

at a perpendicular distance 7 from it equals, £, =

2 %
fE,dmf A
2ae,r
1 x

(where x is perpendicular distance from the thread by which point 1 is removed from it}

. So, the work done is
2xe,r

Hence Ay, = 5—::;—— Inn
0

3.32 Let us consider a ring element as shown in the figure. Then the charge, carried by the
element, dg= (2nRsin®@)Rd 0o,

Hence, the potential due to the considered element at the centre of the hemisphere,

1 gg_ ZﬁoRsianB_ ﬂm&smede
dne, R dme, 24 ‘\y

dg=

So potential due to the whole hemisphere

w2

oR

Ro .
P= i-egfsmedﬂm Teq
0

Now from the symmetry of the probiem, net

electric field of the hemisphere is directed ¢ e

towards the negative y-axis. We have

dE. = 1 M=~g—~sinecosedﬁ ¢ R X
Y 4me, R? 2,

=2 w2
g a o
e =2 ==L | sin20d8+ =>, along YO
Thus E = £, 26, fschosBdG 450.[8“[2 dg 480,along,)’
0 0
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3.33 letusconsider an elementary ring of thickness (dg

R )

dy and radius y as shown in the figure. Then

potential at a point P, at distance [ from the ! [ Z
centre of the disc, is : . T~ N
c2naydy W et l » P
dp= L '
? 4::(-:9()124-12)1/2 ) ‘,"
Hence potential due to the whole disc,
R
q)'f 02:tydy _— al (‘/1 (R/1)2 )
dne, (P +1%) 2,
From symmetry
L
E= E, 3l
e f 2l _4l.efj 1
2% \/ 2,42 2|
ZVR Vi+wp
oR
when [+ 0, o= —, F= —— and when />>R,
2¢y’ 2 o
oR? o R*

¢ degl” 480[2

By definition, the potential in the case of a surface charge distnbution is defined by integral

= Tre f ——, In order to simplify integration, we shall choose the area element d§
0

in the form of a part of the ring of radius r and width dr in (Fig.). Then dS = 20 rdr,
r= 2Rcos 8 and dr= - 2Rsin 8d 0. After substituting these expressions into integral

= Z}%—g;fg-r@- we obtain the cxpression for ¢ at the point O:
[}
¢ = -.Sifesinede. e
Ty
y
‘We integrate by parts,
derioting @ = 1 and sin0 40 = dv: /
stianG-wecosB ¢ 0
+fcos9a’9==-0c:osﬂ+sin6 0

which gives -1 after substituting the limits of
integration. As a result, we obtain

¢= oR/me,
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3.3

3.3
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In accordance with the problem @m a-7

o i
Thus from the equation : Ew -V g

= d ™ g ™ g TErr —
E= - *a;(axx)u-é;(ayy);wé:(azz}q--[axx+ay;+zk}==-u

{a) Given, p= a (x2 - yz)

So, Ew —Von-2a(xieyj)

The sought shape of field lines is as shown in the figure (a) of answersheet assuming
a>0

(b) Since @ = axy - . -

So, E= -Vo= —ayi-axj

Plot as shown in the figure (b) of answersheet.,

Given, p= a (X’ + yz) + b

So, E= -%':p= —[Za.xr;Zayf;szlﬁ
Hence }:’?l- 2V @@+ + 627
Shape of the equipotential surface :

— T b] 2 2
Put p=xi+yj or p‘=x"+y

Then the equipotential surface has the equation

«a p2+b22- constant = @
Ifa>0, b>0 then ¢>0 and the equation of the equipotential surface is

which is an ellipse in p, z coordinates. In three dimensions the surface is an cllipsoid of
revolution with semi- axis Vo/a , Vo/a , Yo/b.
fa>0, b<0 then @ can be 2 0. If ¢ > 0 then the equation is

£_Z

¢/a /b
This is a single cavity hyperboloid of revolution about z axis, If ¢ = 0 then

ap® - b} = 0

or Zm ::‘\/f—- p
bl

is the equation of a right circular cone.
If ¢ < 0 then the equation can be written as

bl 2~ a p® = ol
2
__.2_.2_..._ I L
ol /1Bl el /a
This is a two cavity hyperboioid of revolution about z-axis.

or
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3.38 From Gauss’ theorem intensity at a point, inside the sphere at a distance r from the centre

- . pr T, . q
is given by, E, 35, and outside it, is given by E, T e, =

(a) Potential at the centre of the sphere,

@ R w
e 2
%.,f E-dﬂfﬁwdr+ g 2R, 4
0
i ol R

4,”0,-2 38 2 4negR
as 8n€3R+43t£0R 8meyR (as P 41533)

{b) Now, potential at any point, inside the sphere, at a distance r from its centre.

dre,

2
nq‘)a[l—- r

R @
(p(r)sf—e—rdr g &
3g

. _ 3q r ——
On integration : ¢ (r) e R [1 IR 3 R2

3.39 Lettwo charges +g and —g be separated by a distance L Then electric potential at a point

at distance r> >/ from this dipole,

-

P()m ol ey 4 (’“ “h ) )

-+ E ]
dnegr, dmeygr. dmg,

But r_-r,=lcosf and r.r_= 7 ép
From Egs. (1) and (2),
{cos B cos 8 per
py= L LR g L
drxe,r dme,r 4reyr +4
where p is magnitude of electric moment vector.
Now, E,= -2 2pcesd T
o dme,r 1
dp psin @ 1
and Eg= - e
8 raf  qmeyr -9
So E= VEE+E§=-L—3 4 cos® 0 +sin 0
dre,r
3.4 From the results, obtained in the previous problem,
2pcos 8 psin B
E = and E =
" dmeyr @ 4n£0r§

From the given figure, it is clear that,

E,= E,cos8 - Eysin0= —E—(3cos?0-1)
dae,r
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and E, = E,sin0 +Eycos 9= 22300000
" - dmeyr
When ELp, [E|= E, and E,= 0
1
So 3cos’8=1 and cosB= —=
V3

el
Thus E, P at the points located on the lateral surface of the cone, having its axis, coinciding

wilh the direction of z-axié and semi vertex angle 8= cos” 11/ V3,

341 Let us assume that the dipole is at the centre of the one equipotential surface which is
spherical (Fig.). On an equipotential surface the net electric field strength along the tangent
of it becomes zero. Thus

~Egsin@+Ey=0 or —Eosin9+~2—s-ll‘—%= 0
dxe,r

/3

-iF
Hence r ( ane E, )
Alternate : Potential at the point, near the dipole is given by,

— —
Q= -—M?wE(,-Fft—constant, / \
4rne,
= (q_P__?..EO) cos 8 + Const \ 3{52 " Fo
drer

For ¢ to be constant, £ / t \Er

W

P P
-E,= 0 or = E
TN ¢ 4::501"3 0
1/3
= - (s)
3.42 let P be a point, at distace r?_rland atan anglitoﬁ the vector !_’('Fig.).
L ~ L
> 2 A 2
Thus EathzﬂEO ﬂrz Tmeg T
r+§ r-——z-l P
A Fril2 Fiil2
= 2 2 - 72 9
Tt rz+%+rlcose r2+£~—»rlcosB /( n
- &
- b (L2 > >3
- Znae(ﬁ ” 0059] A 0 . B
— —_A
Hence E= [E|= L3 , re>l
Zme,r
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3.44

m{7>1]2]

A - T A
Also, P Tre, intr+l/2!-2x%

A i r2+rlcos9+12/4_. Alcos @

- n , P>l
dme, FPorlcosB+1%/4 2xeyr

The potential can be calculated by superposition. Choose the plane of the upper ring as
x = [/2 and that of the lower ring as x= - I/2.

g q

Th - -

O N B 0- 27 dneg|Rr s V]
- q _ q
dey[RP+2° -] 4w, [R*+2 + ]

- L SR PR - 1 ppp—
ey R+ 2R+ D)) dag(RP+) 2R+
4:teﬂ(R2+?);:7

For jx|>>R, o= q!
4::?
The electric ficld is £ = -%Sf
. ql 3 gl rre 202 x% - R%)

- + x ™
4, (R*+ 152)3/2 2 (R2 + _1f2)5/2 4ne, 4xe, (R: + x2)5/2
For jxd>> R, Em m-g-lu-g The plot is as given in the book.
2xegx

The field of a pair of oppositely charged sheets with holes can by superposition be reduced
to that of a pair of unifosm opposite charged sheets and discs with opposite charges. Now
the charged sheets do not contribute any field outside them. Thus using the result of the
previous problem

R

o= {(~0)i2nrdrx
dre, (rz +,1c2)?'/2
0

F

] gﬁfzy_ o .
od [y od
YT 2 VR 2 te

1 x* o IR
- P N NV
VRE+ 2 RB+H? 24 (R + )77

The plot is as shown in the answersheet.

.%ol
£, dx 2g,
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345 For x> 0 we can use the result as given above and write

ol 1o B
280( (R2+x2)1/2)
for the solution that vanishes at a. There is a discontinuity in potential for |x] = 0. The
solution for negative x is obtained by 0 — — 0. Thus
alx

———————— 4 constant
2¢g(R+ xHi?

(pxs_

Hence ignoring the jump

for large ff opw=z —“Lf and E w ——‘E—-—; (where p= nR o D)
4neyx 2w, |
346 Here £, = 5y Fo= Eg= 0 and ?wp%ET
0

(a) palong the thread.
—
E does not change as the point of observation is moved along the thread.

F=0
— -
(b) p along r,
FuFe«-= g, u — On using —e, = 0
T 2megrt T 2meyrt "8 ar o )
(c) palong e
., .8 A
Pr692xsﬁr "
e

3.47 Force on a dipole of moment p is given tm,

aE
F= ‘&p'gl—

In our problem, field, due to a dipole at a distance I, where 2 dipoie is placed,

348 -dg= E &= alyde+xdy)= ad(xy)
On integrating, p= —axy+C
349 _dg=E-dr= Raxyi+203 -y ] [dxisdyj]
or, dpe= 2axydx+a(xz-—y2)dy- ad(xzy)—-ayza'y
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On integrating, we get,
2
P = ay(')%'—-xz]-i-c
3.5 Given, again
iy — — i — — —
~do= E-dr= (ayi+{ax+b2)j+byk) - (dei+dyj+dxk)
= alyde+axdy)+b(zdy+ydz)= ad (xy} + bd (yz)
On integrating,

= -laxy+by)+C
3.51 Field intensity along x-axis.

E = —%zl&axz (1)
Then using Gauss’s theorem in differential from
oE, p (x)
e so, p(x) = baeyx
3.52 In the space between the plates we have the Poisson equation
L _ P
arx L]
of, (p#-&xza-Axa-B
2%,
where p, is the constant space charge density between the plates.
We can choose p(0)=0s0B=0
Po & Ap Po d
Then fP(d)uA(p=Ad—Té0— o1, A—*“"gw+'~2""£;}'
Now Ea—-g—tﬁa —p—gquuO for x= 0
3x g
d
if A=22,50%
d 2¢g
2e54
then o= Gd'z ki
d
Also Ew)= 2%,
&g
3.53 Field intensity is along radial line and is
E,=-22. _2ar (1)
' ar

From the Gauss’ theorem,

47r E, = f 4
£,
where dq is the charge contained between the sphere of radii r and r + dr.

r
Hence 4str2Er== dnr x (~2ar) = :—Efr'zp (r')y dr' {2}
9 g

Differentiating (2) p= -6¢ya
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3.2 CONDUCTORS AND DIELECTRICS IN AN ELECTRIC FIELD
3.54 When the ball is charged, for the equilibrium

355

3.56

357

of ball, electric force on it must counter balance

the excess spring force, exerted, on the bail

due to the extension in the spring.

Thus F, = F,, T +4
A

2
or, ~ee e

I, = KX, ¢ force on the charge
4me, 207 (T ® :I:
g might be considered as arised from attraction

by the clectrical image)

org= 4lVre,xx, ! Image.
sought charge on the sphere. -9

By definition, the work of this force done upon an ¢lementry displacement dx (Fig.) is
given by

Y
dA = F dx= ~ 5 dx, 7
4 7 ey (2x) 7
where the expression for the force is obtained 2 F 4
with the belp of the image method. Integrating © 4 < > >X
this equation over x between [ and w, we find 7 xX dx
7 o
/
T 16me, f [ 16 ney!l /

{a) Using the concept of electrical image, it is clear that the magnitude of the force acting
on each charge, =

. 2 2 F’i
lFI#ﬁ 1 7 1 2
4neyl” dme, (\5!)
- —1—=@Vv2-1)
Bne,l

(b} Also, from the figure, magnitude of
electrical field strength at P

1 Y49
E 2(1 Sﬁ)neglz

Using the concept of electrical image, itis easily
sgen that the force on the charge q is,

IACY SR -7
4mey {2) 4neu(2\/wl)

//

e

— o ————
~
ALY,
\g

H (it is attractive) -4 jﬁ"ﬂ:’"""’""‘""‘l q
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3.58 Using the concept of clectrical image, force on the dipole p,
—

= GE = .
F=p R where E is field at the location of
pducto (-7)

R g 2
or, iF ‘m I%-?— P~ 3213 1‘ B'}‘ 1-‘3
()] *.,_,.z.,.,._.’..(......z-—-)
as, |E}= B
4 7€y (2

3.59 To find the surface charge density, we must know the electric field at the point P (Fig.)
which is at a distance 7 from the point O .

Using the image mimror method, the field at P, +4
E=2Ecosa= 2 -2 2‘{’ %l PReYy)

Arex" X 2me{(It+r)
Now from Gauss’ theorem the surface charge {
density on conductor is connected with the m’()?

electric field near its surface (in vaccum)
through the zeiationa- g, E,, where E, isthe

projection of E onto the outward normal Ethth
respect to the conductor).

As our field strength EH n, so —Q

ql
- g Fow
IR TN

3.60 (a) The force F, on unit length of the thread is given by

F, = )\E
where E, is the field at the thread due to image
charge : 1
Y /_/'"
E, 2ne, (20)
- 32
Thus Fy = —— X
dney ! p
minus singn means that the force is one of ~A i 4
attraction. ‘
(b) There is sn image thread with charge //’/
density- A behind the conducting plane. We

calcutate the electric ficld on the conductor. Itis
Y]
E@) = E, 0} :rtso(x?'+12)
on considering the thread and its image.
Thus
M
TP+ 1%)

ofx)= g, F



361 (a) At O,

A dx A
£ o [ 2l
a( ) 4 41!891.’2 21!501

A

So 0(O)= ¢, E, = Sxl

291

-

Adx x A xdx
®) E,()= 2f4n£9(x7‘+r2) (x2+r2)1/2-: 2“%‘[(12'*"2)5/2

!

o

dne,
I +r

Hence o (r)= gy £, = e
" 2aVitsr?

3.62 It can be easily seen that in accordance with
located on a similar ring but on the other side

1

A d .
f ;—5‘%, on putting y= x> +7°, dx'l' A

e 1 7
2380V12+r2 0" n /
A

-x

the image method, a charge —g must be
of the conducting plane. (Fig.) at the same

perpendicular distance. From the solution of 3.9 net electric ficld at O,

S
dre, (R:+ 1% (
outward normal with respect to the condycting
plane.

E'.-=2 ~n'} where n'is

Now E,; - -g-—
0
_ql

Henc =
e TR I

where minus sign indicates that the induced
carge is oppogite in sign to that of charge
g>0.

apy

3.63 Petential @ is the same for all the points of the sphere. Thus we calculate its value at the
centre O of the sphere. Thus we can calculate ts value at the centre O of the sphere,
because only for this point, it can be calculated in the most simple way.

q
dne; !l

Q= ¢

' 6
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where the first term is the potential of the charge

g, while the second is the potential due to the
charges induced on the surface of the sphere.
But since all induced charges are at the same o
distance equal to the radius of the circle from +‘l
the point C and the total induced charge is

equal to zero, ¢’ = 0, as well. Thus equation

(1) is reduced to the form,

- 9
¢ 4ney

3.64 As the sphere has conducting layers, charge
—g is induced on the inner surface of the sphere
g and consequently charge + g is induced on
the outer layer as the sphere as a whole is
uncharged.

Hence, the potential at O is given by,

S (-9 q
O dmeyr 4me R, 4meR,

it should be noticed that the potential can be
found in such a simple way only at O, since
all the induced charges are at the same distance
from this point, and their distribution, (which
is unknown to us), does not play any role.

3.65 Potential at the inside sphere,

L . a3
¥a dne,a 4dnegb
i b
Obviously ¢,= 0 for g, = ~—q )
When rz b,
4 2 4 b .
A 4neor+4naer_ 4:1:59(1—“)/ r, using Eq. (1).
And whenrs b
L . - S | N £ 1
@, dnmeyr 4dneg,h dmeglr a

3.66 (2) As the metallic plates 1 and 4 are isolated and conncted by means of a conductor,
$; = 9, Plates 2 and 3 have the same amount of positive and negative charges and due
to induction, plates 1 and 4 are respectively negatively and positively charged and in

addition to it all the four plates are located a small but at equal distance d relative to each
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other, the magnitude of electric field strength between 1 - 2 and 3 - 4 are both equal in
magnitude and direction (say E ). Let E be the field strength between the plates 2 and 3,

which is directed form 2 to 3. Hence E' 1 E (Fig.).
According to the problem

E'd= Ap= ;- ¢, ) o
In addition to - N
Pr=Pa= 0= (@ =P + (@3~ 93) + (@3~ ) 3 J,'h e D
or, 0w ~Ed+Ap~Ed 4‘; MB
Ag N 4
or, AtmeEdorErsZa, aﬂ
Hewce  E= == 52 @)

(b} Since E a ¢, we can state that according to equation (2) for part (a) the charge on
the plate 2 is divided into two parts; such that 1/3 rd of it lies on the upper side and
2 /3 xd on its lower face.

Thus charge density of upper face of plate 2 or of plate 1 or plate 4 and lower face of
g, A

qu) and charge density of lower face of 2 or upper face of 3

3g= ggE=

o g B 80%})—

3g5A
Hence the net charge density of plate 2 or 3 becomes 0 + 0’ = —Ji—fi, which is obvious

from the argument.

The problem of point charge between two conducting planes is more easily tackled (if we
want only the total charge induced on the planes) if we replace the point charge by a
uniformly charged plane sheet.

Let o be the charge density on this sheet and E,, E, outward electric field on the two

sides of this sheet.
s}

Then E +E)= — - -
g

'

!
The conducting planes will be assumed to be |
grounded. Then E, x = E, {I ~x). !

g o
E = —(l~x), Ey= —
Hence 1 Tey {I-x), E, l%x
This means that the induced charge density on
the plane conductors are

i

i

i
0}“"""?"([“'37): Gza’gx I } '

l

Henee gq, = n%(I—x), g,= —%x



204

3.68

3.69

370

Near the conductor E= E_= .g._
0

This field can be written as the sum of two parts E, and E,. E, is the electric field due

to an infinitesimal area dS.

. a
Very near it E; = & —
2g,

. o
The remaining part contributes Ez - 5 on
E
¢
beth sides. In calculating the force son the
element dS we drop E, (because it is a

self-force.) Thus
dF o o’

R PR P

The total force on the hemisphere is

a2
02
F = ——cosB-2xRsinBRJO
2g,
0

%2
2.2
- M—fcosesiuedﬁ
2, /

2aR* 1 q 74
= X e X ) - -
2ey 2 l4mR 2neyR

We know that the force acting on the area clement dS of a conductor is,

o T | —
dF = 30E dS (1)

It follows from symmetry considerations that
the resultant force F is directed along the z-axis,
and hence it can be represented as the sum
{integral} of the projection of elementary forces
(1) onto the z-axis :

dF, = dF cos B 2)

For simplicity let us consider an element area
dS = 2 7 R sin 6 R 4 6(Fig.). Now considering
that E = /g, Equation (2) takes the from
2 p2
dF,= no R
&

sinBcos 040

(n crg R?

] cos® 6.d cos B
€
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3.73

298
Integrating this expression over the half sphere (i.e. with respect to cos 0 between 1 and 0),

. :tU%Rz
we obtain F=F =
48,

n
The total polarization is P = (g ~ 1) g5 E. This must equals ....,J?V..,}i where nis the concerntation

of water molecules. Thus
no P

N= GOk

= 293 x 10° on putting the values

From the general formula

E = ane, 13 where r={and r {1 p

Tkis will cause the induction of a dipole moment.

Pina™ g431:8 93 * o

Thus the force,

ﬁ_ po 1 2p 3p°
Tan P lAne, 15 ante,l

The electric field £ at distance x from the centre of the ring is,

E@)= sty
dmey (R +x7)

. . i gpx
The induced dipole moment is p= Be, E =
T
P P~ Be An(Rex )3/2

The force on this molecule is

FmplEn-_—4BX q_3_x . B xR -2
ax 4n(R2+x2’m4”°ax(R2+x2 1670¢e, R+5)

This vanishes for x = % (apart from x = 0, x = o)

It is maximum when

3 x(R-¥x2) 0

ax (R2+x2)4
or, R -2x% (R2+x2)~412(R2+x2)-8x2(R2-2x2)# 0
or, RE-13X°R*+10x5%= 0 or, ¥*= 50 (13.»c \/129)

orx = v—g—a— V13 1ﬁ9 (on either side), Plot of F, (x) is as shown in the answersheet.
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374

375

376

3.77

Inside the ball

. L

D{F) am i %k

Also ¢E+P=D or “=E_;__£5’= E%lzq;_ri

’

' Pds. 8~1j_f . E-1

Also, T §Pd g 4 dQ= € q
o
D™ 8Lyt ™ Deontucior™ @ 06 Egiy = T
e-1
Pna(emi)sﬂﬁwz——?h
Or'-Pnu_E_lo

This is the surface density of bound charges.

From the solution of the previous problem g, = charge on the imterior surface of the
conductor

A |
= -(e~1)/e fodS= - -

q
Since the dielectric as a whole is neutral there must be a total charge equal to

-1 . .
. 4 on the outer surface of the dielectric.

G ouer = ¥
(a) Positive extrancous charge is distributed uniformly over the internal surface layer. Let
o, be the surface density of the charge.

Clearly, E= 0, for r<a
Fora<r

g lxan r* = 41a® o by Gauss theorem.

2
o
of, Enmq“(g”) ,a<r<b
ge
For r > b, similarly
2
o
E= -2 (ﬁ) , r>b
€ \ 7
Now, E= éﬂl
ar
So by integration from infinity where ¢ (o) = 0,
oy a*
Q- r>b

Eq T
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o
a<r<b = :Er + B, B is a constant

a<reh

2 2
Oy 4 (s
or by continuity, ¢ = 2 (“j’- - }-‘-) + 2

?
gge \r b] g b

For r<a. @= A= Constant

By continuity, ¢ = s

(b) Positive extraneous charge is distributed uniformly over the internal volume of the
dielectric

aaaz 11 crc,a2
palntey B
Eq € ( ) g b

Let py = Volume density of the charge in the diclectric, for a <r < b.
E=0, r<a

eoe4urzE= %(ra—aa}po,(a<r<b)

£o a
or, E=3£E(r--—§)
) 7
4n .3 3 2
E-w:,;w(b u-a)pn/eﬂthtr,r)b
b -
or, E.'=-(—————}2—p—q for r>b
Jeyr
By integration,
B -d
-M for r>b
Jgyr
po (A &
ot, @-B—seoe[2+r),a<r<b
By continuity
B-d . g Po _b_2+g_3_
3egd Po Jggel2 b
Po (e’ -d)) !?i gf_
o5 B 3&08{ b 27 %
2
: Po (& Po @
Finally Q B—3£D£(2+a B 280£,r<a

On the basis of obtained expressions F {r) and (g){r) can be plotted as shown in the
answer-sheet.
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378 Let the field in the dielectric be E making an angle oo with 7. Then we have the boundary
conditions,

Eycosay= e Fcosa and Egsinc,= Esina

. 1
Soe E= E sino, + - cos®c, and tan o = £tanc,
0 ot 3 9 '

In the dielectric the normal compenent of the

induction vector is / n

D, =gek = gpe Ecosa= gy Ejcos oy Lo
1 / >La
¢=PFP =D -¢k = (lm-g)eoEﬁcosun %
. z
or, o = 5 g Eq cos

g1 /

3.7% From the previous problem,o’ = eomsﬂ—mEo cos O

Eo
7 o 1 /ylengz‘hl
i T
R i
i

a) Then E-d5=m}"Q=uR2E cosBE“1
g o £
0

() § Ddiw (Dy,-D, )= (5gEgsin 0 - e ey Eysin0) = ~ (¢ - 1) g, E, I sin 6

- 8D,
380 (a) divD= = - P and D= p!

E=2L 1<dand E,~ 22 constant for [>d
eﬁe 80

B

2
0 () = —-zﬁg’?, l<d and ¢ ()= A-E2 15 dthen g (x) = P——({(d-——d———l),
]

€ &y
by continuity.

On the basis of obtained expressions E, (x) and @ (x} can be plotted as shown in the figure
of answersheet.
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3.82

®) p'= ~div P= -div (£-1)50§’== —~pgs—;ll

o' = P, —P, , where n is the normal from 1 to 2.

—
= P, , (P,= 0 as 2 is vacuum.)
L

= (pd-pd/e)= pd =t
div3= l——é—rzD =
rzar r p

r

D, = p§+A D =

A=03as D,» o at r= 0 Thus, E = Pr

Jeg
B
For r>R, D = =
-
Rs
By continuity of D, at r= R ; B= ﬂg—
Rs
s0, E=-£5 rsR

3 2
p= —Q&—, r>R and = —-—E“+C,r<R
3egr 6eg,

2 2
. LPR PR .
C= + 3¢, P 5 , by continuity of ¢.

See answer sheet for graphs of E (r) and g {r)

3
PRI S N, ple-1
®) » de--rzar{3p(1 e]} €

O'= P -Pym Py = é-px(x--i—)

299

Because there is a discontinuity in polarization at the boundary of the dielectric disc, a
bound surface charge appears, which is the source of the eleciric field inside and outside

the disc.
We have for the electric field at the origin.

E,"‘ "f od.S's;T
dngyr

where 7= radius vector to the origin from the element dS.
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383

3.34

o' = P = Pcos© on the curved surface
{P, = 0 on the fiat surface.)
Here 8 = angle between 7 and P

By symmetry, E will be parallel to P. Thus
2

E'“chosE)Rdﬁécose‘d
4 e, R

]

where, r= R if d<<R.

—
Pd — Pd
So, E-~4£DR andE--4£0R
Since there are no free extrancous charges anywhere
- 0D,
divD= —== 0 or, D, = Constant
ax
But D, = 0 at o, so, D = 0, every where.
Pl 2 Py
Thus, E',-—--Q—l—--f or, E'x----—-‘2 1=
£y d gy d
Pyx P0x3
So, P o e e 3 + constant
gy de,d
Hence,
o d) 2P,d 2P, d 4P,d
+ e - - - -
M M g 3d’e, 3%
(a) We have D, = D, or, e E,= E;
d d d E,+E,= 2E
.AlSO, Ei"z-+E2-2'- Eg of, 1Hlg™ 0
Hence, 2-£+lan 1" T an 1= D= 7

() Dy= D, or, ¢E,= £, = %-E0

E
Thus, E wEy, E,= ‘EE and D, = D,= ¢, E,
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3.85 (a) Constant voltage acros the plates;

.86

3.87

383

E=E,=E,, D= g)E, D,= g;eE,
(b) Constant charge across the plates;
E wE), DweE,DywceyEnmeD

2E,

Ei{l+€)=2E;, or E\= E,=

E+1

At the interface of the diclectric and vacuum,
Ey=E,
The electric field must be radial and

Ejm Eym ——, a<r<b
Egt T

Now, gm= (2 xRY + (2 % RY)

(1«!- )2:!
o, E =~E = —_—
! 2 21&69?'2(11-5)
In air the forces are as shown, In K-oil,
F—F w F/e and mg—*mg(l—%q).

Since the inclinations do not change

1, P
€ p
or, Eg-l—lns_i
[ € £ .
. mg mg.
o1, P‘Po'é":_"'l”

where pg is the density of K~oil and p that of the material of which the balls are made.

Within the bali the electric ficld can be resolved info normal and tangential components.
E,» Ecos0,E,« EsinQ

Then, D, = eg,Ecos8
and P =(e~1) ggEcos

or, g = (e-1)eg;Ecos B

$0, O™ (E~1)gE,

and total charge of one sign,
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3.90

H

q’-f(e—i)eoEcos92:rtR2a’(cosB)- AR eg(s-1)E
0

(Since we are interested in the total charge of one sign we must intergrate cos 6 from 0
to 1 only).

The charge is at A in the medium 1 and has an image point at A" in the medium 2. The
electric field in the medium 1 is due to the actual charge g at A and the image charge
g at A'. The electric fleld in 2 is due to a cotrected charge ¢ ot A. Thus on the boundary
between 1 and 2,

E,= —1—sin0+—L—sineo
dng,r 41:501‘2
Eyw —Lsin ®
x 4ﬂ€0f2

The boundary conditions are
D, =D, and E, = E,

eq" = q-4
qg'=-q+q
"o E Ju_e"“l
So, 9 a+1’q E+1

(2) The surface density of the bound charge on the surface of the dielectric
o= PZII“ Dzn"‘eﬁEzu' (8 - 1)‘59E2”

e-1 g e-1 gl
-5"’127”2%6 Tetlgn,
{b) Total bound cha ¢ s, St f d Ynxdre - S
® ’ E"}‘Iq 21[{}'2.1.};2)3/2 €+1q
o

The force on the peint charge g is due to the bound charges. This can be calculated from
the field at this charge after extracting out the self field. This image field is
E. -l 4
™ e+l 4ne, (2n*
2

| q

Thus, F=
e+l 16:\7501i




asi E, =

392

393

q? q'?'
gt =2 Pin1
41r£9r1 4:1'51-2 €,
H;,“"'
E,- i pin2
4nme,r,
whcre qﬂa ;‘?{, q!‘ q!f'_’q
—
In the limit [ — 0
. ara)r, qr”

4ne0r3 2yl +e)}r

Thus,

om el
2reg(l+e)r

De ——d
e, (1 +e)r?

el —

- qr, qr
Ep= 5+

dmeyer, Admeyr,

— qn;"'
2 .
Ep' S Pin 1
4itery

Using the boundary conditions,

E, = ¢E,,, E, = E,

tn
This implies

g-eq=q" and greg = eq"
So, q"ns—gi— e-lg

e+ 1’ e+1le

q =
Then, as earlier,

PR U (f:,.!.)},

2y e+l e

- in either part.

QS S——
P 2meg(tee)r

53 Pin 2

—
—
é
=
=

1 in vacuum
£ in dielectric

T2
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To calculate the efectric field, first we note that an image charge will be needed to ensure
that the electric field on the metal boundary is normal to the surface.
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394

395
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The image charge must have magnitude -f

so that the tangential component of the electric
field may vanish. Now,

E = ! (—L)Zoosﬁa -~

3

dneglep? 2meger
Then P, = D, - ¢, E, = =104
2ner

This is the density of bound charge on the
surface.

Since the condenser plates are connected,
Eih+E,(d-h)= 0

and PregE = gyE, )} A EZ T
P >z ;
Thus, Eyd-22n 0, of, Epm T2 fl
> 2 50 * 4 2 Eod ¥
Q--ip—% |

Given P= o e where r'= distance from the axis. The space density of charges is given
by, p'= ~div P= -2a

panis.

On using. div 7= - %(#ﬂ- 2

In a uniformly charged sphere,
p[} r - Po -

Er"‘-g“g; o, E= 'BTOT

The total electric field is

Es 380 Por'3sn("‘°5;’ pﬂ

—

P L FYt 2
3¢, Po g,
- T .
where pdr= — P (dipole moment is defined
with its direction being from the -ve charge
to +ve charge.)

The potential outside is

N ) P T
4ne0(r ”}r—ér )’ 4,;,50,3’ r>R

4n
3

(paz

where P = - == R® p, or is the total dipole moment.
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3.97 The electric ficld E m a spherical cavity in a uniform dielectric of permittivity e is related

3.98

399

3100

to the far away field E in the following manner. Imagine the cavity to be filled up with
the dielectric. Then there will be a uniform field E everywhere and a polarization P, given
by’ ol o~

P= (E - 1) £y E
Now take out the sphere making the cavity,

the_glectric field inside the sphere will be
P

3g,
—
—

= P
By superposition. £, ~ E P E
€9

or,E;a E+%(£—I)E’a -;—(£+2)E

By superposition the field E’ inside the ball is given by
E=E,-

0" 3¢,
On the otlter hand if the sphere is not too small, the tacroscapic equation

P={e-1) EGE must hold. Thus,

Flieleon)-E o Bk
—e 8—‘1"“
Also P-3£0;—:'2—E9

This is to be handied by the same trick as in 3.96. We have effectively a two dimensional
situation. For a uniform cylinder full of charge with charge deasity p, {charge per unit

volume), the cleetric field F at an inside point is along the (cylindrical) radius vector P
and equal to,
1

Em Eg;pr

i 1 £ L
divE ;o {rE,) e’ hence, E, 280;'

Therefore the polarized cylinder can be thought of as two equal and opposite charge dis-
tributions displaced with rwpec{ to each 'other

i

P
Esze prw- p(r 8r) w pt‘)r---280
Sinice P - p 8 F. (direction of clectric dipole moment vector being from the negative
charge to positive charge )
- & 7
As in 3.98, we write E= £, - e

(1]
using here the result of the forigoing prob}er_n};
Also PW (E-l)ﬁog

.
;’E'l'l il — 259
So, E( 3 ]a-Eo, ar, E= - and P 220 +1E°
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3.3 ELECTRIC CAPACITANCE ENERGY OF AN ELECTRIC FIELD

3.101 Let us mentally impart a charge ¢ on the conductor, then

R, -

- Q.= *m"ﬂmmgdr\» —-—g—-—idr
4ne,er dne,r
Rl R‘-‘.
-9 (1 11 g9 1
4xege | Ry R,
_....L[Lt.%&]
R,

4mege R,

Hence the sought capacitance,

gdnege 4me e R,

Cr ot Ty
P, - 9. e-1) 1 R,
Q[ Rz Rl (Eﬁl)Rz"Pl

3,102 From the symmetry of the problem, the voltage across each capacitor, Ap= E/2 and
charge on cach capacitor g= CE/2 in the absence of dielectric.

Now when the dielectric is filled up in one of the capacitors, the equivalent capacitance
of the system,

; Ce
Co 1+e
and the potential difference across the capacitor, which is filled with dielectric,
Aq)‘ L3 -1’— E] Cﬁ —5- =
eC (1+e)Ce (1 +%)
But pak

So, as @ decreases -;—(1 + &) times, the field strength also decreases by the same factor

and flow of charge,Ag= ¢’ - ¢

Ce . C. 1 _ (e=1)
v (1+E}§-2§- 2C§(e+1)

3.103 (&) As it is series combination of two capacitors,
d g5
LI V. MW S I
C ge§ 5e,s {(d,/e) +H{(dy/e5)
{b) Let, o be the initial surface charge density,
then density of bound charge on the boundary
plane,

bt
£ £ LIS
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cv gSE €y Y

B 2 LY 02 ¥V

uo O ST S T ndve,dy 5
Vg, -

So g Ve, —ey)

, G » e
g, di+e,d,

3104 (a) We point the x-axis lowards right and place the origin on the left hand side plate.
The left plate is assumed to be positively charged.
Since £ varies linearly, we can write,
gx)= a+bx
where a and b can be determined from the boundary condition. We have
e=¢; at x= 0 and €= ¢, at x= 4,

) Ex- 8y
Thus, elx) = g, + p X

Now potential difference between the plates 4 -
4
= [
- = f E-dF= f dx
A A £ £(x)
4 0
£
- f o di = aod In 2
( €, -8 ) (e;—e,0e, €
g+~ x

0 €
0 d

oS f(ea-g)gS
P, -9, (Iney/e)d

{
L

Hence, the sought capacitance,C =

" ﬂ U .
() D and P TS
and the space density of bound charges is
q( €y~ €y )
Sde? (x)

3.105 Let, us mentally impart a charge g to the conductor. Now potential difference between the

piates,
R,
-p = f E -dr”
Rl

p'=—divP = -

4 L 9
dnegalr p 24 T dmeya InRy/R,
Rl
Hence, the sought capacitance,
g gdnega 4dneya

C= e Te. " JWR/R, - WK,
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1106

3107

3.108

“Then,q)-fde-

1ct A be the linear charge density then,
A

Ein= 2reyR €, ®
A
and, gg__,- W (2)

The breakdown in cither case will occur at the smaller value of r for a simultaneous
breakdown of both diclectrics.

From (1) and (2)
E . R e = E, R,e, which is the sought relationship.

Let, A be the lincar charge density then, the sought potential difference,

& &
A A
tp¢«@“-f2“£oelrdr+ f Ineye,r dr
R &

A [1 1
by [E} In Ry/R;+ - In Rs/Rz}

Now, as, E,R,e<E, R, ¢, 50
A
2re,
is the maximum acceptable value, and for values greater than £, R, ¢,, diclectric breakdown
will take place,
Hence, the maximum pdiential difference between the plates,

1 1 £y
¢, -9 = E R & ;—;-InR,/RI + gin Ry/R, ] « E. R, [ InR,/R; + -é;-ln Ry/R, }

Let us suppose that lindsr charge density of _
the wires be ) then, the potential difference, D+ J;
o, -9 = ¢-(-9)= 2 ¢ The intensity of the
clectric field crested by one of the wires at a
distance x from its axis can be casily found
with the help of the Gauss's theorem, bl
A
E- 2meyx

|
|
|
¢
|
b-a l
|
Se
!

Vs

A 'b--a
Zzeon a

*Hence, capacitance, per unit length, S&_
A 2n ey

AL “nb/a
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Fhe field in the region between the conducting plane and the wire can bt obtained by
using an oppositely charged wire as an image on the other side.

Then the potential difference between the wire

and the plane, &1' |
Ap = fE" dr” ' ?pa
b ‘
| = |
] f A} & | £
2meyr 2mey(2b-r) ] =¥ !
L]
N S S | |
2ne, a 2ne, 2b-a b . b é
i ) %-a PP >
2me, a E l
- In g_Q’ as b>>a
2ne,
Hence, the sought mutual capacitarce of the system per unit length of the wire

A 2wy

T Ay In2b/a
When b >> a, the charge distribution on each
spherical conductor is practically unaffected by
the presence of the other conductor. Then, the
potential @, { @_ ) on the positive (respectively

negative) charged conductor

is  + -
+—1 i
dnegeal dnega
- m L
Thos @, - @. 2neega

and C = —d 2re ea.

+ -

. . a o
Note : if we require terms which depend on B e have to take account of distribution

of charge on the conductors.

As in 3.109 we apply the method of image.
Then the potentical difference between the -f-q -4
+vely charged sphere and the conducting plane
is onc half the nominal potential difference
between the spbere and its image and is

iy

O R E
2 dneqa / Z
B .

Thus

C= K%ns dnega. for I>>a
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3113

>

O

(a) Since p; = @z and @, = @

/“%

Ag s

<>

n

N2

G

The arrangement of capacitors shown in the problem is equivalent to the arrangement

shown in the Fig.

D

N

—-C

N

B

&
c

E

D
C\/\/C
C'\/‘c

E

o 1)

and hence the capacitance between 4 and B is,
C=C +Cy+ 0,

(B) From the symmeiry of the problem, there is no P.d. between D and E.. So, the
combination reduces to a simple arrangement shown in the Fig and hence the net capacitance,

22
(a} In the given arrangement, we have three

£ S
capaciiors of equal capacitance C = —%—- and

the first and third piates are at the same
potential.

Hence, we can resolve the network into a simple
form using series and parallel grouping of
capacitors, as sbown in the figure.

Thus the equivalent capacitance

C+0)C 2
Go=tcro+c 3¢
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(b) Let us mentatly impart the charges +¢ and ~¢ to the plates 1 and 2 and then distribute
them to other plates using charge conservation and electric induction. (Fig.).
As the potential difference between the plates 1 and 2 is zero,

g, S
wom e =m0 |where Cw= e

or, 4= 24q,
The potential difference between A and B,
9= u-op= ¢/C
Hence the sought capacitane,
g_9t%_ 3q 3. 3¢S
¢ g /C 2q1/C 2 2d
Amount of charge, that the capacitor of capacitance C, can withstand, g, = C, V| and
similarly the charge, that the capacitor of capacitance C, can withstand, g, = C, V,. But

in series combination, charge on both the capacitors will be same, so, g_, ., that the combination
can withstand = C, V|,

Cp=

as C, V, <C, V), from the numerical data, given.
Now, net capacitance of the system,
Ci CZ

Crgve

Doax C, v,

= = v
C, = C,C/C4C, 1+62 = 9k
Let us distribute the charges, as shown in the figure.
Now, we know that in a closed circuit, - Atp = 0

and hence, V.

-So, in the joop, DCFED,

1 1
—---—=t o1 ¢,= C gyt )]
Cl CI Cv2 E Q‘]. 1 [ E q2 (CI CQ_) ] (

Again in the loop DGHED,
9 G1tdy

g - E )
- - C
D %H 9 G %;%2 A
G 91t4, -4
i i 4. *Z
g-ﬁ:ﬂ Cy + sz}él:
*(‘lﬁ‘%) B
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Using Eqs. (1) and (2), we get

B R 1
201 CZ CZ CZ
P S 1 1
N, e, T2 [1 3 G
| T
c, G sz
g g
or, w 10V
Fa=®a _c_zf‘{_n*2 N +3n+1
C12 c,

3.116é The infinite circit, may be reduced to the circuii, shown in the Fig. where, C, is the net
capacitance of the combination,

1 1 1 ¢
S e W e
* c+6,'T G, - i}
Solving the quadratic, C __!_ l
A2 2 Co
CCp+El-C2m 0, T T
we get, *
(¥3-1)
Ce= C, uking only +ve value as C; can not be negative.

2
3.117 let, us make the charge distribution, as shown in the figure.

Now, @,-@p= -—*§+

2 Cr G
@a-9)+ & B4 b -4
o, gm=-A"¥T5 e A 1t i 1
’ C +C, 42 B
Hence, voltage across the capacitor €
.4 (‘PA"‘?’B)*% _
¢ T Eac, Cam 10V
and voltage across the capacitor, C,
_ 4. (P~ 9a) + E. C.= 5V
T cC C,+C 1= G
2 1mm <94 8
3118 Let &, > &, then using — Ap = 0 in the closed i
circuit, (Fig.
ie) Fag-Leog-o L Iy
T+ n
or _ & “51) € G
’ €, +Cy 1
D -4 4 c

A
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3.12¢
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3122
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Hence the P.D. accross the left and right plates
of capacitors,

L4 _G-5G
=TT GG

and similarly

$2= " TG

Taking benefit of te foregoing problem, the amount of charge on each capacitor

I | §§2“§11C1C2
A= TE N,

Make the charge distribution, as shown in the figure. In the circuit, 12561.
- Ap= 0 yields

G C2
tC,C ~Lieds A 4592 3
-q—l-!-?—i-—‘g=0 or -4 4 H I
GG, S APYs)
and in the circuit 13461,
It 1
@ B ., _EGC, YT, —giFg R
et 780 o @ EE c: G
2 ™ 1T M2 3 4
D 4 n]
Now :pA-qgau.é_l_....C_; 6 ‘lg 1
c, C, C,C5-C,C,
I FEY vl M TP Y raeen)
It becomes zero, when
€,Cy-C,Cm 0. or oim 22
(€, C5-C CY = -°f"’é*2**“é:

Let, the charge g flows through the comnecting wires, then at the state of equilibrium,
charge distribution will be as shown i the Fig. In the closed circuit 12341, using
~Ap=10

GV-a q,.9_, +4
¢ C;, G Ca
HCV-4) e
or, g = L4 = 0-06 mC S P +i
9% /¢, +1/C,+ 1/Cy) ~(c¥:4) —
initially, charge on the capacitor C; or C,, Iﬂq’

CECC
T C,+C,

, as they are in series combination (Fig.-a)
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when the switch is closed, in the circuit CDEFC from ~ Ag = 0,4Fig. b )

g
E-25=0 or = 1
2
And in the closed loop BCFAB from - Ap= 0
"%
c gm0 @
Sw
Y/ -4 u+‘1 D C ‘f'q:l"' B
t4 %y
[ R =C —& &7 =Cz -4
-q 4
1 2 E 1 F 2 A
@) (b
From (1) and (2} g,= 0
Now, charge flown through section 1 = (g, +q,) - 0= C, &
and charge flown through section 2= ~g, ~g= - EAR:
! C, +C,
3.123 When the switch is open, (Fig-a)
28C,C,
D= CEC,
{ 1
1 t4 oL 14,
EY - (r T “*:Ci
Sw/ o W %
3 -4 3
L A% +99
&7 T C2 &7 T
+4, +qy
2 2

and when the switch is closed,
=§C; and q= §C,
Hencc, the flow of charge, due to the shortening of switch,

C, -
through section L= g, ~g,= §C, = - 24uC
! C,+ C2
through the section 2= ~g, - (g,)= EC = - 36 uC
1T 210+ C,

and through the section 3= ¢, - (g,~¢,)-0= E(C,~C;) = ~60uC



3124 First of sll, make the charge distribution, as shown in the figure.

3128

3126

In the loop 12341, using - Ap= 0

315

T I Gt 1 A4+, 6
i S { . 2 2
Cl %1 * C3 0 (1) 2 C‘lql '{F
G Ce
Similarly, in the loop 61456, using ~ Ap = 0
H %4 ~9i92
ot k=0 @ G
2 3
992
From Eqs. (1) and (2) we have 5
§C,-§ C, 3 ] 4
R 4 8B
2424g ! 62
G G
-9 §5C-§C
Hence, A== T TN TG+ C,
In the loop ABDEA, using ~ Ap = 0 ; ~(41+92) ’
+
B Dt E —il ||%the p
A +& =0 1) : L
3G c, 1 & Cr
Similarly in the loop ODEF, O
g+ 4, v ] It
I %2 - === 1 -
¢ tharhrp =0 @F &: 5 qzl(l: 7 C
Solving Eqgs. (1) and (2), we get, ¢ 2
g +q=gzcz‘gzcz“gzcs+%3cs | '
12 G, % AT 3 Fqilg b
+==+1 g C
¢ ¢ 3 3

(4, + q)
NOW,(PI—@(,H‘;)IH— C

, a8 {gy=0)
1

_ E:L(Cz'*cg)” Egcz"gsca
B C,+C,+Cy

E(C,+Cy) - §C, -5, Gy

And using the symmelry, @, =

Ci+Co+Cy

- E(C+C)~§ C -y

and s C,7G,+C,

The answers have wrong sign in the book.

Taking the advantage of symmetry of the problem charge distribution may be made, as

shown in the figure.
In the loop, 12561, —- A= 0
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or @‘32 9, ‘21=0

;" G G

6 ‘L;}-QI 5 42;:42 4

g1 (G +Cy)
or e 1
0 GG cy W Cr C2
. A 9:"‘?2 B
Now, capacitance of the network, —---—-_*-__- -
oo Dth _ hith o 9,',
O gy @/Cr+q/Cy i "
T 411~ 2 4114 3
1+q,/
= _(__Mgémg.gl_ 2) Cz G
14
G @C
From Egs. (1) and (2)
2C,C,+ C4{C, +Cy)
07 TTEC +C,+2C,
. . L a4 4
3127 (a) Interacuon energy of any two point charges ¢, and ¢, is given by ype— where r
0
i the separation between the charges.
+4 +4 +9 R S 5 T 1
T T} |
! i i f ’
! . $ ; i
i ' ! f | |
I ! |
f I
| ! | |
e b L
Lo e + I I
HMe—"a >t -q +9 -4 -4

Hence, interaction energy of the systcm,
2
V=49 yp
¢ dmega 4y, (V2 a)

’ g
U= 4-—1 42
> 4neya 4nsg(vr2—a)

2 2
and v-2-—4 20 24 V24
© Tdmeyga dnga 47550(\/54) Tdmeya
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As the chain is of infinite length any two charge of same sign will occur symmetrically
to any other charge of opposite sign.
So, interaction energy of each charge with all the others,

2
-y [y 1 11
U 24xeoa[1 St e up to oo {1
1, 1 3
But in(l-t-x)wx--ix FFE e up o ®
11
and puiting x= lwegetln2= 1——2~ IR up to e {2}
From Eqgs. (1} and (2),
U -2q'In2
4reqa

Using electrical image method, interaction energy of the charge g with those induced on

the plane.
2
Um —4 o - i
4me, (2D Bre,l
Consider the interaction energy of one of the bails (say 1) and thin spherical shell of the
other. This interaction energy can be writien as f dpg

E:4

2.
q, py(r)gyrsin0dOdr

r)2xr’sin0d0dr= f

f4ns R P2 () A Zeo(lz-brz-i-ZITCOSg)l/Z

ter

’
drfdxpz{r)
ol
fer

qr
2801(1}' 2rp, () -2

q i

Hence finally integrating

ik where, g, = f 47 Py (r)dr
0

Ui = dxeyl

Charge contained in the capacitor of capacitance C,is ¢ = C; @ and the energy, stored
init:
U.= .,,,‘sz.g ~C @
g 2

Now, when the capacitors are connected in parallel, equivalent capacitance of the system,
C = C, +C, and hence, energy stored in the system :
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c2 (pz
U= m , as charge remains conserved during the process.
So, increment in the energy,
2. 2 2
7 o S N S W Pl LR AR PY
2 IC+C, C) 2{C{+Cy)
3.132 The charge on the condensers in position 1 are as shown. Here
g_%_ 9%
C C, C+¢,
d (g + )-———-—1 +l- E + WC(C+C{3)E
a I*wcie,tc o I T yac
i c? g S
ence, 1= ¢ v2¢ M D= caC

] -9, Lo
+4 ii'% -4-9 +9+90 -4, -4

—C o = C ==C - =C
-4 ~%0 +9+9  |-9-%0 +40 +4
@] 0

1 2 1 2 .
4o 0
@ i ig . (b = }5 —~

After the switch is thrown to position 2, the charges change as shown in (Fig-b).
A charge g, has flown in the right loop through the two condensers and a charge ¢,

through the cell, Because of the symmetry of the problem there is no change in the energy
stored in the condensers. Thus

H (Heat produced) = Energy delivered by the cell

CCy ¥
- 848= 8= 55¢

3.133 Initially, the charge on the right plate of the capacitor, g = C (§; - &;) and finally, when
switched to the position, 2. charge on the same plate of capacitor ;
qg=CEg

Sa, Agm g = C E,
Now, from energy conservation,
AU + Heat liberated = A _;,, where AU is the electrical energy.
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3138
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%cgﬁ-—;—c (&, - &)+ Heat liberated = A gE,
as only the cell with e.m.f. E, is responsible for redistribution of the charge. So,

CE &, - %c &2+ Heat liberated = C &, &,.

Hence heat Hberated = —;—C ‘g‘;

Self energy of each shell is given by E;P-, where @ is the potential of the shell, created
only by the charge g, on it.
Hence, self energy of the shells 1 and 2 are :
2 2

4 92
e Ad Woow —=
8xey R, e 8neyR,
The interaction energy beitween the charged shells equals charge g of one shell, multiplied
by the potential @, created by other shell, at the point of location of charge g.

Tz q: 2
So, Vo= 5ok Tne kK,
Hence, total enegy of the system,

Us W+ W+ Wy,

‘ﬁ " ‘Ig. +9142

2R, 2R, R,

W o

- 1
4nzg,

Electric fields inside and outside the sphere with the help of Gauss thcorem :

1
E = % (r s R),E,= —1—=(r>R)
! 4me,R? 7 dmey
Sought self energy of the ball
R ]
2 2
e £y 2 f gg E; 2 gf 1
=f 3 Anridr+ 5 dnridr= Sﬂsoﬁ(5+l)
0 R

Hence Uw and E-l"u 1
’ 4rne,5R W, 5

(a) By the cx;:ressionf % g, e E 2dv= f % eg E 24n s dr, for a spherical layer.

To find the electrostatic energy inside the diclectric layer, we have to integrate the upper
expression in the limit [a, b]
b
2
U= 3~c=.(,ef (w—i-m) 4n it dr= -—fﬁ—-[—l-m%} - 27 m]

2 4 4;;505 81!&08 a
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3.137 As the ficld is conservative total work done by the field force,

i
Ay=U-U-= 39(‘1’1"‘?2)

L g 1 1) 4 U 1
T 24mey|R, Ry| 8mey|R, R,y

3138 Initially, energy of the system,

U= W, +W,, where, W, is the self encrgy
and W), is the mutual energy.

1 & 99
Se, Ui §4xaoR1+4neoRl

and on expansion, energy of the system,
U= W+ W,

L@ 9%
24me, Ry, dmeyR,

Now, work done by the field force, A equals the decrement in the electrical energy,

q(qwq/?-)(z 1)

i.e. s )=
€ A= (U,-0p dneg R, R,

Alternate : The work of electric forces is equal to the decrease in electric energy of the
system,

A=U-U
In order to find the difference U; - Uy, we note that upon expansion of the shell, the electric

field and hence the energy localized in it, changed only in the hatched spherical layer

consequently (Fig.).

R,

Eg
U~ Ufuf-z—(fzfuﬁf)-zmrzdr

R

where E; and E, are the field intensities (in the hatched region at a distance r from the
centre of the system) before and after the expansion of the shell. By nsing Gauss’ theorem,
we find

1 4d+dq 1 %
1 dne, 2 drey p?

As a result of integration, we obtain

A_Q(qo*qﬁ)L 1
TN (Ri R,



3139

3.140

4

321

Energy of the charged sphere of radius r, from the equation

i _1 _q
v qu]'Zqﬂhtsor Breyr

If the radius of the shell changes by dr then work done is
AnrPF,dr = ~dU = ¢*/8neyr’
Thus sought force per unit area,

N q (4 n rlo)? o’
“ 4nr@neyr) 4nrix8mer 2%

Initially, there will be induced charges of magnitude ~g and +g on the inner and outer

surface of the spherical layer respectively. Hence, the total electrical energy of the system

is the sum of self energies of spherical shells, having radii ¢ and b, and their mutual

energies including the point charge g.

gl @ 1 (9  _-q9 99 ., _-4q
Po24nepb 24mega dmega dmegh dney b
’ 2
o U™ e [%_%]
0

Finally, charge g is at infinity hence, U= 0
Now, work done by the agent = increment in the energy

iG]

' o Breyla b

{a} Sought work is equivalent to the work performed against the electric field created by
one plate, holding at rest and to bring the other plate away. Therefore the required work,

A gem ™ qE (xy-x,),

where E = 5%—- is the intensity of the field created by one plate at the location of other.

0
2
g 4
So, Aagent = qm(x2"x1)= 2¢,S (e ~ %)
Alternate : A, = AU (as field is potential)
2 2 2
q q -

" 5es 36 T Fes )

{b) When voltage is kept const,, the force acing on each plate of capacitor will depend

on the distance between the plates.

So, elementary work done by agent, in its displacement over a distance dx, relative to the

other,
dA = ~F dx

x

But, F_ = (;(x))Sa(x) and ofx) =

2
1osvi o &SVIry o1
Hence, A=fdA=f Fh g de= = [Z_EJ
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3142

3.143

Alternate : From energy Conservation,
Uf— UE - Ace!l +A
s A S
or 107 y2 107 p2 202 B2 VA,
2 x 2 x x x
(884 = (G- V = (C,-C)V?)

eOSVZ[ 1 1]

X X

So A agent ™ 3

(a) When metal plate of thickness nd is inserted inside the capacitor, capacitance of the

tem be Coym foS
system becomes S
d o d(1-v)
- , SV
Now, initially, charge on the capacitor, gy« Cy V'« w
LAY
Finally, capacitance of the capacitor, C = ——d—

As the source is disconnected, charge on the plates will remain same during the process.
Now, from energy conservation,
Up-U;= A, ., (as cell does no work)

or, T = e e A

2
£, SV - 2
Hence A= %{-—2-—-] [é--(l “)]- 1EVn s

d(i-m) ¢ | 20-w
(b) Initially, capacitance of the system is given by,
Co= ;]w(—i-%—gm {this is the capacitance of two capacitors in series)

So, charge on the plate, gy= C, V

Capacitance of the capacitor, after the glass plate has been removed equals C
From energy conservation,

A g = Up= U,
1 1 1 1CVieq (e~ )
0-8 mJ
2%[6‘ Co] 2eme-DF

When the capactior which is immersed in water is connected to a constant voltage source,
it gets charged. Suppose g, is the free charge density on the condenser plates, Because
water is a diclectric, bound charges also appear in it. Let ¢ be the surface density of

bound charges. (Because of homogeneity of the medium and uniformity of the field when

we ignore edge effects no volume density of bound charges exists.) The electric field due
, ¥

to free charges only —8—0; that due to bound charges is g— and the total electric field is
0 0

o,
»ég-. Recalling that the sign of bound charges is opposite of the free charges, we have
0
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e T e e s O, o' =

Because of the ficld that exists due to the free charges (not the total field; the field due
to the bound charges must be excluded for this purpose as they only give rise to self
encrgy effects), there is a force atiracting the bound charges to the near by plates. This
force is

1,9 e-1) 0, .
1p% =10 per unit area.
27 g, g

The factor % needs an ¢xplanation. Normally the force on a test charge is ¢F in an

electric field E. But if the charge itself is produced by the electric filed then the force
must be constructed bit by bit and is

F aj q( £’ ) dE'
0
if g{E')=xE' then we get
1
F=2q(E)E
This factor of 1 is well known. For example the energy of a dipole of moment F in an
—p
electric field E; is ~ p+ E, while the energy per unit volume of a linear dielectric in an

- — e
electric field is - ~1—P ' E, where P is the polarization vector (i.e. dipole moment per anit

2 .
volume). Now the force per unit area manifests ifself as excess pressure of the liquid.
o
Noting that —‘—f- -—
d &g,
eqe(e ~ nV?
We get Ap= s

Substitution, using € = 81 for water, gives Ap = 7-17 k Pa = 0-07 atm.

One way of doing this problem will be exactly as in the previous case so let us try an
alternative method based on energy. Suppose the liquid rises by a distance A. Then let us
calculate the extra energy of the liquid as a sum of polarization energy and the ordinary
gravitiational energy. The latter is

1, o 1 2
§'h Pe Sh-—z-pgSh

If ois the free charge surface density on the plate, the bound charge density is, from the
previous problem,

This is also the volume density of induced dipole moment i.e. Polarization. Then the
energy is, as before
1 -1 o =(e=1)0°

“3 0 k=50 €, pr
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3.146

and the total polarization energy is

-S(a+h)g§*g-‘:o)gg-2- _lh“i“ - e

q——‘,..... -"F_"'"'“ ——— ::,’:-—-'"'?'

Then, total energy is

U(h)=-5(as+h) o) ;)02+%pgSh2

The actual height to which the Jiquid rises is determined from the formula

du
7 U'(h)=0
This gives h=- M
2e,8 pg
2
We know that energy of a capacitor,U/ = '210* .
Hence, from F_ = v we have, F = g s c? 1)
X | g Const. 2 ax

Now, since 4 << R, the capacitance of the given capacitor can be calculated by the formula
of a parallel plate capacitor. Therefore, if the dielectric is introduced upto a depth x and

the length of the capacitor is I, we have,
2regeRx 2nRe(l-x)
C= S+ 3 2

From (1} and (2}, we get,

2
- gg(e- )RV nR |4
When the capacitor is kept at a constant potentxai difference V, the work performed by
the moment of electrostatic forces between the plates when the inner moveable plate is
rotated by an angle dp equals the increase in the potential energy of the system. This
comes about because when charges are made, charges flow from the battery to keep the
potential constant and the amount of the work done by these charges is twice in magnitude
and opposite in sign to the change in the energy of the capacitor Thus
o/ 1,..29C
N L et —W —
278 2 ap
Now the capacitor can be thought of as made up two parts {with and without the dielectric)
in parallel.

x

echcp . sae(nmzp}Rz

Thus C= i 57
as the area of a sector of angle ¢ is %Rz . Differentiation then gives
{e-1) :=.0RZV2

The negative sign of N, indicates that the moment of the
force is acting clockwise (i.e. trying to suck in the. dielectric).
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ELECTRIC CURRENT

3.147 The convection current is

3148

3.149

dg
== 1

here, dg = hdx, where A is the linear charge density.
But, from the Gauss’ theorem, electric field at the surface of the cylinder,

=

2nepa
Hence, substituting the value of A and subsequently of dg in Egs. (1), we get
2E m ey ady
Jo ———
dt

=2ne,Eav, as —-m v

R

Since 4 << r, the capacitance of the given capacitor can be calculated using the formula
for a paraliel plate capacitor. Therefore if the water (permittivity €) is introduced up to a
height x and the capacitor is of length [, we have,
seglnre ga({-x)2mr e 2nr
C= = + F == {(ex+1-x)
Hence charge on the plate at that instant, g = CV

Again we know that the eleclzic current intensity,
1)
dt

dt
- Vea2nr d(ex + 1 -x) . V2nreo(5-1)£x_
d dt d dar
But, %x;m v,
So, I= Z—K—f—s—";‘;ﬂu 011 A

We have, R, = R, (1 +au),(1)
where R, and R are resistances at#° C and 0° Crespectively and o is the mean temperature
ceefficient of resistance.

So, Ri=RyQ+o, ) and Ry= nR,(1 + 0, 0)
(a) Im case of series combination, R = IR,
50 R=R, +Ry= R[A+)+{oy+nay) (43]
o + 110,
-Re(1+n)[1+2 Tom t] {2
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Comparing Eqgs. {1} and (2), we conclude that temperature co-efficient of resistance of the
circuit, o+,
o=~
1+7m
(b} In paraliel combination
Ryl+a, i Rym{l +a,0) Nk,

- - R : ! -
TRy (1 +oy ) +nR{(1+ oy 1) Ri(L+a's), where R 1+n

Now, neglecting the terms, proportional to the product of temperature coefficients, as being
very small, we get,

'7](134'(12
a m

1+m

3.150 (a) The currents are as shown. From Ohm’s law applied between 1 and 7 via 1487 (say)

6 {/3 I 6 {2""13 i
% ; 7 I
2[—7 i 3 2 2k \ 2(I2-T3)
1 M/ 413
1\1’3
I/J \ 7 /6 Ig A [ >IZ"I3 8
e 8
d ) I -1
1 Z 2
7 % 4 L+20
! @) (b)
IR, - ~§R+£—R+§R= %RI
Thus, Rﬁq= :S-'g*

(b) Between 1 and 2 from the loop 14321,
L R=2LR+1GR or, I\ = I;+2I,
From the loop 48734,
-I)R+2U, - 1) R+, ~L;)})R = I R

or, 4Uy-ty=1y o L= 2l
50 I = lsilz
Then, (1, +2) Ry = S LR = [|R= S 1,R
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5
o Ra= 38 6 J;>/2 7
{c) Between 1 and 3 9 2}/2 A 5 AT
From the loop 15621 2 3 rela

LR=LR+3R or, =32 W

pft = 4yt 2 or, ip= 5 }:2\ IME Iz
Then, (I, +20)R,,= 4LR,, /5 B

0
= LR+LR= 3R 1 N
I 4

Hence, Req= % R. Lr2r, (©

3.151 Total resistance of the circuit will be independent of the number of cells,

2R A

R R_r <......_.....> R:v
B B

. (R, +2R)R
if R, = —ee
R.+2R+R

2 2
or, R°+2RR -2R"=10
On solving and rejecting the negative root of the quadratic equation, we have,

R = R(V3 ~1)

3.152 Let R, be the resistance of the network,
A
A AAAA——
Rr

B 8

R, R \
then, R = 02 or R;-R,R,~-R R, =0

“U HZ
R-—_} I+V 1+4'_2 = 052
0 2

On solving we get,
R,
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3153

3154

3.155

3.156

Suppose that the voltage V is applied between the points A and B then
V= IR = LR,
where R is resistance of whole the grid, I, the current through the grid and /;, the current

through the segment AB. Now from symmetry, £/4 is the part of the current, flowing
through all the four wire segments, mecting at the point A and similardly the amount of
current flowing through the wires, meeting at B is also I/4. Thus a current [/2 flows
through the conductor AB, i.e.

Hence, R =

Let us mentally isolate a thin cylindrical layer
of inner and outer radii r and r+dr

respectively. As lines of current at all the points 1 >
of this | dicular to i s
his layer are perpen :Ci..l ar. o it, such a N J/ ?Aizl e
layer can be treated as a cylindrical conductor t,-ﬂr“- i """'"""""“;f‘"” *
L]
of thickness dr and cross-sectional area/ [/ ‘1\’ T?' [ !
M i
2 rl. So, we have, ,':' it | [
1) t Y
dr dr W \
dR= porsm= py— R \
S " 2 N o ‘\ —
and integrating between the limits, we get, N\_ 7 N
b
R=L 1?2
2d " 4

Let us mentally isolate a thin spherical layer of inner and outer radii r and r + dr. Lines
of current at all the points of the this layer are perpendicular to it and therefore such a
fayer can be treated as a spherical conductor of thickness dr and cross sectional area

axr So

dr
4
And integrating (1) between the limits [a, b], we get,
SN F O S
R 4xn [a b
Now, for b —» <, we have
R =P
4na
In our system, resistance of the medium R = L1 1 ,
4mia b
where p is the resistivity of the medium
The current jm P — B

R p1 1
4xla b
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L -dgw__dgCQ)‘_ do ) ,
Also, i 2 e c o a$ capacitance is constant. 2)
So, equating (1) and (2) we get,
— % __cd%
Lo fi 1 dr -
4nia b
o, - f do_ A
¢ Cpfl_ 1
4x|a b
or e Ardmab
’ = Co@-a)
Hence, resistivity of the medium,
4nAtab

p= Ch-a)lnn

Let us mentally impart the charge +q and —q to the balls respectively. The electric field
strength at the surface of a ball will be determined only by its own charge and the charge
can be considered to be uniformly distributed over the surface, because the other ball is
at infinite distance. Magnitude of the ficld strength is given by,

Em 1
d4neya
9

and electric current

So, current density j = ;1)- 5

4meya
1= [ P 5= —E—yamat= L
pane,a PEy
But, potential difference between the balls,
: Q- =2 .

4nea
Hence, the sought resistance,

9, -9 2g/4meqa p
I~ g/pgy 2ma

R=

&

{a) The potential in the unshaded region beyond the conductor as the potential of the given

charge and its image and has the form

PR PP
- -~
¢ = A '1- e -1— f// ////’/ ;
r, r (Pl “p
i 2 /f/ P // -
where ry, r, are the distances of the point from 5 ; o <
e . - w
the charge and its image. The potential has 2

been taken to be zero on the conducting plane -
and on the ball -

11
$“A(E'm)=v
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So A = Va. In this calculation the conditions 4 << [ is used to ignore the variation of
i over the ball.

The electric field at P can be calculated similarly. The charge on the ball is

Q = 4ne,Va
Va 2alv
and E, m 2cos6 =
- El
Then j = —1—E = 201:; normal to the plane.
p pr
{b) The total current flowing into the conducting planc is
I=f 2nxdxj==f dmrxde —22
0 o P (Kz + 12)

(On putting y = £+ %)

I ZRan%w 4naV
P fy3 P

V.. e

Rw=—m
Hence T ™ 5
3159 (a) The wires themselves will be assumed to
be perfect conductors so the resistance is
entirely due to the medium. If the wire is of
length L, the resistance R of the medium is

1 . . .
o f because different sections of the wire are

connected in parallel (by the medium} rather
than in series. Thus il R, is the resistance per

unit length of the wire then R = R,/L. Unit
of R, is ohm-meter,

The potential at a point P is by symmetry and

superposition
(for I >> a)
- 4 In P’;_ - 4 in :"2"
?*3 2
A . T
P
Then @, = —g = % In 5} (for the potential of 1)
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or, A-—V/Ini
a

14
" J1nl/a n ry/r

We then calculate the field at a point P which is equidistant from 1 & 2 and at a distance
r from both :

and ¢ =

14 1
Th - r ‘
en £ Siniva (r)x 20
. w1
2Ini/a
1 vV 1
d = “p 7
an T =0k =2 Sha 7
. . V 1
(b) Near either wire " %nl/a a
1 14
and J =0k~ p 2i/e
v \4
'I'hen I_RsLRl&JZML
Which gives R, = f; In l/a

1et us mentally impart the charges +g and -q to the plates of the capacitor.
Then capacitance of the network,
eey | E_dS
Cm q - __9.1___’.'____ (1)
¢ P
Now, electric current,
i=[j"a5= foE,asas 1t E. @)

Hence, using (1) in (2), we get,

jm g..ﬁo,_ Lo _ 1SpA
€€, pEgy
Let us mentally impart charges +q and ~g to the conductors. As the medium is poorly
conducting, the surfaces of the conductors are equipotential and the field configuration is
same as in the absence of the medium.,
Let us surround, for exampie, the positively charged conductor, by a closed surface S, just
containing the conductor,

then, Rais - P ;asﬁ?g
' f;—-’dfs“' JoE,ds
and co 4. esofEndS
L4 ¢

0
So, RC = < = Pté
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3163

3164

The dielectric ends in a conductor. It is given that on one side (the dieclectric side) the
¢lectric displacement D is as shown. Within the conductor, at any point A, there can be
no normal component of electric field. For if there were such a field, a current will flow
towards depositing charge there which in turn will set up countering electric field causing
the normal component to vanish. Then by Gauss theorem, we easily derive

o= D = Dcosa where o is the surface charge density at A,

The tangential component is determined from
the circulation theorem

- YT
§Ear=o 1007,
It must be continuous across the surface of the ’/’i 77

conductor. Thus, inside the conductor there is 77,7 7 7,

a tangential electric field of magnitude, dief{’Cff'fC X A(COﬂdUCtorf
M rd
D««-w:“;‘“ at A . J /////
v 577
This implies a current, by Ohm’s law, of oo //
. Dsina
- EE P

The resistance of a layer of the medium, of thickness dx and at a distance x from the first
plate of the capacitor is given by,

i1 dx
dR = ——— — 1
o S O
Now, since o varies lincarly with the distance from the plate. It may be represented as,

Uy -
o= 0, +( 2 F l)x , at & distance x from any one of the plate.

From Eq. (1)
S S -
G-y S
cﬁ( _ )
d
1 dx d 92
oh R= §f (uz—oi) = S{o,~0y) in oy
o O+ x
d
SViog,-o
Hence, j= "V-"== m(m?'"-"-i")-s SnA
R o,
din —
1

By charge conservation, current j, leaving the medium (1) must enter the medium (2).
Thus

Jicosa, = j,cos o,
Another relation follows from
EI: = E?: ’
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which is a consequence of E d7= 0
'I'hus-l"-—j sin o --Lj si;taz g
01 1 t 02 ? (2) Ci’z Jz
tan o fan
or, 1, or)
% %2 (1
ang, O
or, ! o L J ng
tano, o, 1
The electric field in conductor 1 is
P/
Ei = —5
L YR2

and that in 2 is Ep= D2
TR

Applying Gauss’ theorem to a small cylindrical pili-box at the boundary.
I I
_ P12ds+ Pzzdsncds
nR nR £y

1
Thus, = g s
o (P2 p1) "'""'i'“ R

and charge at the boundary= £, (p, - p;}/

We have E,d, +E,dy= V

. Tl e
and by current conservation //’/ f.//: -
1 1 ey
< s
_i.)_.El& -p—-E2 ,///"E ,//
1 2 +v v /// T
- s
s P
PV f:f'j///
Thus, E;= —F0, G
prd +p,4d, dr

P2 |4
27 pydy+pod,
At the boundary between the two diclectrics,
Om D,-D; = gqe, By - 558, E|

g,V
prd,+ pydy (g, p, -5, py)

By current conservation d
E(x)‘E(x)'de(x)n dE (x) ’;
plx) pl+dplx) dplx) 2 0
This has the solution, . >

is has csou;cn ey EV| E+aE 7
E@=Cpto= 12 :

333
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Hence charge induced in the slice per unit area
do= ﬁuA e ede()} {p@+dp}-exipk}]= Ea dfe(x)p ()]

Thus, dQ= ¢, dd{e(x)px)}
Hence total charge induced, is by integration,
Q= eglle;py~2,py)
1168 As in the previous problem
E{x}= Cplx)= Clpy+p x}

n-1)p,
where pptpd=mpy o1, p;= g
p
By integration V==fC'p(x)dx= cpod(1+3§1)= -;“Cp din+1)
0
2V
ThHS m ———
ppdn+ 1)

Thus volume density of charge present in the medivm

_ 40 _
= £ = &g dE (v)/dx

- 2e,V X(ﬁ—i)f’ez Zeg Vin - 1)
pedn+1) d (n+1)d

3.169 (2) Consider a cylinder of unit length and divide it into sheils of radius r and thickness
dr Different sections are in paraliel. For a typical section,

d(—l—]— Inrdr 2ar dr

R (ar) @

Integrati S de— s

grating, R, 2a 2na
or, R, = -2—;;, where S= nR>

(b) Suppose the electric filed inside is E, = E_ { Z axis is along the axiz of the conductor),

This electric field cannot depend on r in steady conditions when other components of £
are absent, otherwise one violates the circulation theorem

ol —
E-dr = {
The current through a section between radii (r+dr, r) is
2:mrdr s E = ansdrg—
4
Thus f 2 dr E KR E
Hence E = Zoend when § = R’

S?.
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3.176 The formula is,
g= CVy(1-e "R

q ~V/RC 14 -uRC
or, Ve L= V. (1 ~e } o, =1-~¢
C 0 ¥a
Vo~V
or, e RC __Y_g 0
Yo Vo
Vo .
Hence, t = RC In = RCInl0, if V=05V,
Vo~V
Thus £ = 0.6 uS.
3171 The charge decays according to the foumula
g= qoe—-r/RC
Here, RC = mean life = Half-life/In 2
So, half life= T= RC In2
EEg A pd
But, C= 7 R= "
— = 13 3
Hence, p= cegIn 2 14x107Q-m
3,172 Suppose g is the charge at time ¢ Initially g= CE, at t= 0.
Then at time ¢,
€
%ﬁ ~iR-E=0 it
Buti= - %—? (- sign because charge decreases) g % ;M
0
-1R q
g, 94 m
So CE T 7
g, m %
dt RC R
d amrc_ § iyre
or, z9¢ %€
or, q= E;_1§+A e~ tmRE

A= cg(x-%), from g= CE at =0

1 1Y _wure
Hence, =CE[>+{l~—|e™"*
o= Cx[ie(1g)e ]

_dg EM-1) -owke
dt

Finally, [ = 7

3.173 Let r = internal resistance of the battery. We shall take the resistance of the ammeter to
be = 0 and that of voltmeter to be G.

tiallyV = Ewlr. [o= —5
InitiallyV=E~Ir, I e
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3175

G
So, VaeE TN O 1)
After the voltmeter is shunted
—~=E ————E———-— {Voltmeter) ) i,
1 Ly
T R * G
5 5 (A
and = 1) {Ammeter) 3 N A
RG r+G \Y
+ o/ /
From (2) and {3) we have
,,,,E i
5- r+G R

From (1) and (4)
=r+G-nrorG="r
Then (1) gives the required reading

“@

Assume the current flow, as shown. Then potentials are as shown. Thus,

1= ¢~ IR +§ - IR, - & @-1R, £ (ﬂ“IR,'f'gy
Ei"gz et PSP P it N ¢
or, Ix= B A |
1+R2 k
/e
And Q= @ - IR, +§ ;' Sﬂ, ?2 2
g -5 f P
So, @~ -+ R +R2R ;§ T M/v.é--m—
= <(5 R, + &R )/R, + Ry) = ~4V “ ' @-IR IR,

Let, us consider the current i, flowing through the circuit, as shown in the figure.

Applying loop rule for the circuit, -Ag= 0
-2E+iR +IR,+iR=0

& &
o,  i(R,+R)+R)= 2% 1 9k 2 5‘[?_2,,,-
U o
or i= W%Emm
’ R+R,+R,
Now, if ¢ -9;=0
~E+iR, =0 AN N
25k, d 2R, = Ry+R+R §
Or, RM:W* § an 1= 2+ + 1
of, R = R; - R;, which is not possible as R, > R,
Thus, Q- @y ~E+iRy= O



3.176

T

337

or 28R

’ R+R,+R,
So, R = R,~R,, which is the required resistance.
(a) Current, i= ﬁ, NaR a, as E= aR (given)

NR NR
) 9, ~¢p= nE~niR= naR-naR=20

As the capacitor is fully charged, no current
flows through it So, current

§ gx '"“—E:'ril & l

R TR, 5 (as ;> Ky
. £ C
And hence, ¢, ~ @z = §, -5, + IR, 1 1l ! 2
e -t —allg
0~ 1 .
=E -5+ —“’I‘Rz 14
R, +R, £
; 2[! AAA A
(1.‘;1 E) R, Rz
W eALLLLLLLLL——— ) - 0'5 V
R, +R,
3.178 Let! us make the current distribution, as shown in the figure,
Current i = 5 (using loop rule)
. KK
* Ry +R, , .
1 J2
So, current through the resistor R,, J— 4 j ’
1)
R
Q= — 3 2 ETR R R;
R R/R, R +R,
* R, +R,
= &R = 12A
RR +RR,+RR,
and similary, current through the resistor R,,
R
i — 1 i - 08A
R R2 R +R2 RR,+R R,+RR,
R1 + Ry
xR,
{
3179 i - =X
Total resistance Ry + %Ry o \p o
R+
I Ro
l-x xR Ry
" TRt IR TR, (_______‘\",”'j’_ﬁ_’}
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3180

3.181

3.182

xR X xR X
Then V= VQIR+xR9 /(lwi-fooHR)- VBRx/{IR+RGx(1-—[)}

For R>>R0,Vm Vo%

Let us connect a load of resistance K between the points A and B (Fig.)
From the loop rule, A ¢ = 0, we obtain

iR =& - iR (1) N R
and iR =%, - (i-i)R ir
2 17742 A B
or i{R+Ry=5§+ iR (2)
Solving Eqgs. (1) and {2), we get 52 Ra
R, + &R R,R ]
izg“ Ezz/R+ 12 & ) Z
R,+R, R, +R, R + R,
E\R; + §; R, R R, R
where & = ~p <k, ™ Rt gTR

Thus one can replace the given arrangement of the cells by a single cell having the
emf E; and internal resistance R,

Make the current distribution, as shown in the

diagram. 6 Ry [ 182 5
Now, in the loop 12341, applying - Ae=0 +i= ..
iR+i R, +%, =0 0 h
and in the loop 23562, 1'—:1}—4-——/\'*&\'_7‘ 4
iR-E,+(i-i)Ry= 0 @ |& '
Solving (1) and (2}, we obtain current through

the resistance R, ] R
&R, - R)

T RR, +RR,+R\R,

and it is directed from left to the right

i =002A

At first indicate the currents in the branches using charge conservation (which also includes
the point rule).

In the loops 1 BA 61 and B34AB from the 6 . A i 4

loop rule, ~ Ag = 0, we get, respectively _L 1 ¢
-E+ (G -i)Ry + § - Ry =0 63 &

iR, + & - (i-i) R, + &, =0 @) R, R

On solving Eqs (1) and (2), we obtain Re iz;-(:i—i;)

. (, - &Ry + Ry (§, + &) - 006 A . Tga «

1 R,R, + RyR; + Ry R, 1 bR B 2 3

Thus @, -~ @4 = E, - LRy = 09V
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Indicate the currents in all the branches using charge conservation as shown in the figure,
Applying loop rule, — Ag = O in the loops 1A781, 1B681 and B456B, respectively, we

get

Ey = (g - i) Ry . 1) 8 —e? ’\//\?’2\/\’226‘ 5
i3Ry+ i, Ry — By =0 {2) and

(i, - i3))R-E -4 R =0 (3 g_—;f: +p
Selving Egs. (1), (2) and (3), I+ Ry ‘ R3

we get the sought current Z.p“?-f ) {5 R .
P E(R2+R3)+§OR3 1 > > W_ ]
G-h) = R(Ry+R3) + Ry R, to A a g 24-‘":(71"3)

Indicate the currents in all the branches using charge conservation as shown in the figure.
Applying the loop rule (-~ A = 0} in the loops
12341 and 15781, we get

- LR, — (ij~()R, =0 i
§ + LR - (i -B)R, )] s R3 2 o 6
and {(i; ~H)Ry~ & + Ry = 0 ) ) Z,-i AllB
y
Solving Eqgs. (1) and (2}, we get b Ro &
11 , {4
i = g R+ R+ § Ry L5 R &
* " R/R, + RyR; + RyR,
Z ;} g 3
Hence, the sought p.d. & &

Py~ P = & - R,

CE R R +Ry - E R (R + R)

-1V
R.R, + R,R, + RuR, 1

Let us distribute the currents in the paths as
shown in the figure.

Now, ¢, -9, =R + iR, (1).
and @; ~ gy = iR, + ({-{)R, {2)
Sunplifying Egs. (1) and (2) we get

. Ry {g, ~9p) + Ry (@)~ 93)

R R, + R,R, + R, R, 024
R .—.
Current is as shown. From Kirchhoff’s Second law AA ,..1., n C 7%
iRy =iy ~ R o
. . O— Y4
IR+ (4= 5)R =V, A Rq B

. .o ? MY
LR+ (i3+ )R,V ) Rj: D 4+i
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3387

3.188

Eliminating i,
i (R, +Ry) —igRym V

. R :
11R—:(R3+R4)+13R4-V

Hence iy

R\R,
R((Ry+Ry)+ = (Ry+R,)
3

R,
-V{(R1+Rz)~k—3—(R3+R4)]

; Ry (R +Ry)-R(Ry+R,)
3" RR, (R, +R,)+RR,(R;+R,)
On substitution we get iy = 1-0 A from C to D

or,

From the symmetry of the problem, current
flow is indicated, as shown in the figure.
Now, @, ~@g= i, r+{i-i)R 1)
In the loop 12561, from - A= 0
(-ipR+({-2)r-ijr=10

(R+r).
“= 3 ¥R’ @

or,

Equivalent resistance between the terminals
A and B using (1) and (2),

Ra+r
r+R

(r—R)+R},

‘PA“PBH r3R+rnr)

Ro= == i T T3r+R

Let, at any moment of time, charge on the plates be +q and -q respectively, then volage
across the capacitor, o= g4/C 1)

Now, from charge conservation,

i= [, + i, where tzs%? 2) /

In the loop 65146, using ~Ag@= 0.

%+(i1+%‘f)ﬂ-§uo @ &
[using (1) and (:?.)} 1

In the foop 25632, using ~ A= 0

-ZiiR=0 o iR~ % )
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From (1) and (2),

dgq 2 ~dq_ _ d
dr R E] - s, or, ,Z,ﬂ - R (5)
E-
C
On integrating the expression (5) between suitable limits,
q : E _ 2£
f’ﬂ-alfdt or, —-C-ln Ca—t-
£ 29 R A E R
" C
1,y 1 _ am2RE
Thus o v > E ( 1-e )

{a) As current i is linear function of time, and at 7= 0 and A¢, it equals i, and zero
respectively, it may be represented as,

iai0(1-~§~;)

Ar Ar
Th fia f‘x‘di"m
us gq= idt = LO( mAt) t = 3
Q i
So, iy= %Aﬂt
=24t
Hence, i= Ar (1 Ar}
The heat generated.
At
( i 4R
n= [ s [ (3o £)] o 455
o i
(b) Obviously the current through the coil is given by
244
i= |~
012
iy Az
Then charge q= fidr=fi02“‘/‘“dt= 2
In2
0 o
So, i = g———-—zz

And hence, heat generated in the circuit in the time interval ¢ {0, =},

o
(-]

2 2
H=fi2Rd:=f g2 ,-vn) pgp. L2 5
A Ar 2At
0



3142

1190
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3.192

The equivalent circuit may be drawn as in the figure.
Resistance of the network = R, + (R/B) R
Let, us assume that e.m.f. of the cell is E, then
current R
VAAAN
-
R, +{R/3) R
Now, thermal power, generated in the circuit
2 [
P= #R/3= — S (R/) ¥)
(Ry+(R/3) )

t

|
il

8, Ro

For P to be maximum, dap = (), which yields
R = 3 RG

We assume current conservation but not Kirchhoff’s second law. Then thermal power

Ry

dissipated is
P(iy)=iRy+(i-i) )R,

L2(R, + Ry ) - 2iER, + PR,

2
RZ RIRZ
= R R I, - r 2 Am ] - '..
[1+ 2} iy R1+R2‘] + i R 7R, p=2-p
The resistances being positive we see that the power dissipated is minimum when
A
h=ip
1+ Ry

This corresponds to usual distribution of currents over resistance joined is parallel.

Let, internal resistance of the cell be r, then
V=E~ir (1)
where { is the current in the circuit, We know
that thermal power generated in the battery.
0= @) R
Putting » from (1) in (2), we obtain,
0= (€-V)i=06W
In a battery work is done by electric forces
(whose origin lies in the chemical processes
going on inside the cejl). The work so dore
is stored and used in the electric circuit outside. g,r
Its magnitude just equals the power used in
the electric circuit. We can say that net power
developed by the electric forces is
P=u]V =-2-0W

Minus sign means that this is generated not consumed.
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3.193 As far as motor is concerned the power delivered is dissipated and can be represented by
a load, Ry . Thus

|4
I= R
R+R, —
V2R
and  P= [’Rym —— Z Ro
{Ry+R)
This is maximum when R = R and the current . = on
1 is then
|4
IR R
The maximum power delivered is
2
Y up
4R max
V2 2
The power input is R+, and its value when P is maximum is R

The efficiency then is -;—- 50%
3.194 If the wire diameter decreases by & then by the information given
N 2
P = Power input = % = heat lost through the surface, H.

Now, H = {1 - &) like the surface area and

R (1-8)"
v? 2 2
So, E—(i ~8) m A{1~8) o, V°(1~38)= constant
0
But Vol+n so (1+4m)P*(1-8)= Const= 1
Thus §=2n=2%
3.195 The equation of heat balance is
v: dT
R ~k(T-Ty)=C o
Put T-Ty=E
v? k., V2
So, C’E,+k§-§—- or, §+E§= R
d . Ve
o1, "d“;(z.‘sf ) "C“.“ﬁe
we VYV ow
or, Ee™ - i ‘vA
where A is a constant. Clearly
2

E=Qatt=0, so A= wykk;and hence,

V2 &t/ C
T w Tn-i»};“é"(l—-e_ )
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3196 Let, @,-Qp= @

Now, thermal power generated in the resistance R,

R 2
- R - ® 2
P= 1R, . Bk RR, Ro
1YR,+R i R
27 Ae——> AT Y.
For P to be independent of R, :
dP . . Ky KRx
iR R, 0, which yeilds
R R, B

Ro= ghope= 120

3.197 Indicate the currents in the circuit as shown in the figure.
Appying loop rule in the closed loop 12561, - Ap = 0 we get

LR-E +iR,= 0 {1)
and in the loop 23452,
(i-i)Ry+E,-i,R= 0 2) é 4
Solving (1) and {2), we get, J_ l
5 Ry + 5y Ry & Téz
“" RR,+R,R,+RE,
So, thermal power, generated in the resistance R,
2
. 2 E Ry +E R, R
Pe {"R= R
RR,+R R, +RR, Ry Rz
. dP . i
For P to be maximum, R- 0, which fields 1
Ry Rz 1 E 2 Zdr
R= R, +R,
&R+ R

Hence, Fous™ R Ry (R, +Ry)

3.198 Let, there are x number of cells, connected in series in each of the » parallel groups

N
then, nx= N or x= - (1) R
A——— P N -
Now, for any one of the loop, consisting of x
cells and the resistor R, from loop rule £ X"
. |
iR+-:;xr-x§-0 i
£ 1xr
N i
Soi= 25 . , using (1)
xr r e e
R+— R+ NS
n

n
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Heat generated in the resistor R,

Nat

2
Q= iR= -Em- R )]
n“R+NR
and for Q tobemaximum,g% = {), which yicids
Nr
- R = 3
When switch 1 is closed, maximum charge accumulated on the capacitor,
Foax ™ €8 &)
and when switch 2 is closed, at any arbitrary £
instant of time, "
®, +R)[- 4}~ grc, g
dt R
because capacitor is discharging. S SRS
q
d i
1 1 f
or, g m e | Y
f q dq (R, +R,)C A
LN

Integrating, we get
-
-t AT
qq - R, +R,} C OF, 4% Gpax® B R)C )
max

Differentiating with respect to time,

w b
oo 49 Ry R S
FO= 3= dmx € | R R) C

In

~F

) CE W, +R)C
or, 1 (t) = W e i
Negative sign is ignored, as we are not interested in the direction of the current.

-1

: % {R,+R)C

thus, i) = 2 ¢ Bt 8, 3
® (R, +Ry)

When the switch (Sw) is at the position 1, the charge (maximum) accumalated on the
capacitor is,

g=CEg
When the Sw is thrown to position 2, the capacitor starts discharging and as a result the
electric energy stored in the capacitor totally turns into heat encrgy tho’ the resistors R,

and R, (during a very long interval of time). Thus from the energy conservation, the total
heat liberated tho’ the resistors.

‘12 1 2
HSU":"ZWE’EC'E
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During the process of discharging of the capacitor, the current tho’ the resistors R, and
R, is the same at all the moments of time, thus

H, « R, and H, = R,

S H H R, H=H, +H

0, 1=(R1+R,) (as H = H, + Hy)
1 CR, a

Hence H, = 5 R+ K

3.200 When the plate is absent the capacity of the condenser is
EyS
v
‘When it is present, the capacity is
gy C
di-m) " 1-7
{a) The energy increment is clearly.

C' =

12 1z €M 2
AU 2C’V 2C‘V - )V

{b) The charge on the plate is

cv
g;= T o initially and g,= CV finaily.

2

A charge %K—}]l has flown through the battery charging it and withdrawing %—Y—’? units

of energy from the system into the battery. The energy of the capacitor has decreased by

72
just balf of this. The remaining half ie. %%ﬁl must be the work done by the external

agent in withdrawing the plate. This ensures conservation of energy.

3.201 Initially, capacitance of the system = Ce.

So, initial energy of the system : U, = %(C €} y?
and finally, energy of the capacitor : Ufs -;-C vz
Hence capacitance energy increment,
A
AU = 1CV2--(C' &) V= --«- CV (& ~ 1) = - 05 mJ
From energy conservation
AU= Ay +A,,
(as there is no heat Liberation)
But Ay = (C,-Cy V= (C-CelV?
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Hence A, = AU -A
= %C(l-e)Vzw 05mJ
It C, is the initial capacitance of the condenser before water rises in it then

g9 2in R
d

Uy = $C V2, whete Co =

(R is the mean radius and [ is the length of the capacitor plates.)
Suppose the liquid rises to a height A in it. Then the capacitance of the condenser is
c - eefl2nR , eU=R)2R £g2aR
d d d

and energy of the capacitor and the liquid (including both gravitational and electrosatic
contributions) is

(+ €-1)h)

1 £y 2nR

2 d
If the capacitor were not connected to a battery this energy would have to be minimized.
But the capacitor is connected to the battery and, in effect, the potential energy of the
whole system has to be minimized. Suppose we increase 4 by dA. Then the energy of the
capacitor and the liquid increases by

£, 2nR
2d

U+{e~ DIV? + pg 2R hd) 52’-

Sh

(e~ V + pg(Zde)h)

and that of the cell diminishes by the quantity A_,; which is the product of charge
flown and V

&g (2nR)
d

In equilibrium, the two must balance; so

gg(e - 1) V2
pgdh = 5

bh (e-1)V

gy {e -~ 1)V?

Hence h o= —W—
pg:

(a) Let us mentally islolate a thin spherical layer with inner and outer radii
r and r+ dr respectively. Lines of current at all the points of this Jayer are perpendicuiar
to it and therefore such a layer can be treated as a spherical conductor of thickness dr

and cross sectional area 4t rz. Now, we know that resistance,

dar dr
AR = o P i 1
ﬂs(r) p43tr W

Integrating expression (1) between the limits,
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3.204

b

R

dr efl 1
[ oty o re g[2-1] ®
o a

4.‘.!1:808

Capacitance of the network,C = +—rr

5

- where g is the charge
and 9= Ce {at any arbitrary moment] )
also, ¢= %ﬂfﬂ R, as capacitor is discharging. 5

From Egs. (2), (3), (4) and (5) we get,

[.,21] [l..l}

dt a b

4 P

4ncye . dg _ _dt

1= }M_}“ 4 o g peg
a b
4 [
1 dr
Integrati f-—gia——-—— dt =
grating q peoa{ P Eg,
%
=t
Hence g=gge P

(b) From energy conscrvation heat generated, during the spreading of the charge,
H= U;~ Uy, [because A = 0]

1 % 1 ¥ .‘192 b~a
24xegi{a b 8mee ab

(a) Let, at any moment of time, charge on the plates be (g, ~ q) then current through

dig.~
the resistor, i = — ~S%—@, because the capacitor is discharging.
. 4
o6 = -(9o-94) [ 1 (90-9)
Now, applying loop rule in the circuit, ‘ l
- C
iR -4 =0
dq -9 R
or, I R C
dg__ 1 i=d%

on q,~q RC @t dt

3
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At t=« 0, g=0and at t= 1, g= ¢

Q‘n“q =1

So,
o In @ RC

Thus q= qo(lne"’“) 018 mC

(b} Amount of heat generated = decrement in capacitance energy
2

145 L [ q“(l'ewﬂc)]
“3¢73 c
-%%i[l—e—%%]mSZmI

Let, at any moment of time, charge fiown be g then current i = %;1

Applying loop rule in the circuit, - Ap = O, we get :
CVy-
dq IR - _(_.._..,.9.,_._..?..), + % - 0

de c
i 1 R
or, L S A A T AT T V. m—
C VG - Zq RC -q "'(Cvo—¢)
CV,~ -~ e
8o, In e 2 -2----- for =<t<t '“""‘C e
CV, RC +q Clo-9
cv =z < =
g fi-e®) &3
. dg CVy 2 'WRC Yo -awrc
Hence, i= " 5 Re C = —R-e

Now, heat liberaled, -

o V2 _—_._4_{ 1
Q*fi’Rdts -%-Rfe“ dt= = C Vg
4 R ] 4

In a rotating frame, to first order in w, the main effect is a coriolis force 2m v x o

~—d
This unbalanced force will cause electrons to react by setting up a magnetic field 8 so
—
that the magnetic force e ¥’ B balances the coriolis force.

Thus --£——B==m or, B— »?-ﬁ&’
2m e

The flux associated with this is

D= N::rzBsNJtrzwzfiw
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where N = is the number of turns of the ring. If w changes {and there is time for

l
2xr
the electron to rearrange) then B also changes and so does @. An emf will be induced
and a current will flow. This is

I« NurP2o/R
The total charge flowing through the ballastic galvanometer, as the ring is stopped, is
2m
gq=N=n r / . /R
e_2N=n Fo _ lor
m qR qR

3.207 Let, n, be the total number of electorns then, total momentum of clectoms,

So,

P=nym vy 1
e
Now, I=pS v;m f%—-sxvdu Bf-vd {2)

Here S, = Cross sectional area, p = electron charge density, V = volume of sample
From (1) and (2)

me
P w~(-;--Il- 0-40 p Ns

3.208 By definition
nev;= j(where v, is the drift velocity, n is number density of electrons.)

Then T= -l—u Df—{
Va
So distance actually travelled

nel<v>
S= cv>rte ———

{<v> = mean velocity of thermal motion of an electron)
3209 Let, n be the volume density of electrons, then from I= p S, v,
I=neS |<i>|= neS,%

neS, !
So, t= T 3 us.

{b) Sum of electric forces

= | (nv) eE”i = |nSle pj—t where p is resistivity of the material.

a nSIepé—a nelpl= 10uN
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3.210 From Gauss theorem field strength at a surface of a cylindrical shape equals,

, Where A is the linear charge density.

2mer
Now, eV %—mevz or, vw= 2eV (1)
¢
. dg &
Also, dg= hdx so, at a
o1, I=Av or, A= {*u --MM{"m»using(I)
2V
ml
H LV 2 5y,
ence E= 2oy e V- m

{b) For the point, inside the solid charged cylinder, applying Gauss’ theorem,
2xrhE= nPh—d—

eonR !
or, E= 9/! A L %
2xeyR 2nxeyR
So,from E- _{fd_;{"_,
9, &
A
-.d mf""‘""""""’""""““‘—rdr
f ® ZR%RZ
7 o
or S S [ g
* ‘pl 2 ZNEORZ 2 o 43‘50
Hence, oy - 4‘;‘2 -~ = 080V
3211 Between the plates p = ax*?
oI, %%- ax3xm
do 4 o
w —gx " w - p/E
a9 P
4¢e.a
or, pw- -~ 90 x—?/?'

Let the charge on the eiectron be - g,
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then -;—mvz -e@= Const. = 0,
as the electron is initially emitted with neligible energy.

V2== 229’ V= 269
m m

4eqa 0] 23
S im DV m\/_.i’i -3
% j==pv=g m "

{j is measued from the anode to cathode, so the - ve sign.)

|4
3212 E= p
So by the definition of the mobility
v uty =, V= u‘o-g
and ju(n+u§+nwu5)fav-

3213

3214

(The negative ions move towards the anode and the positive jon towards the cathode and
the total current is the sum of the currcnts due to them.)

On the other hand, in equilibrium n, = n_

I . - €V
So, n+==n_=3~:/ (uo+u9)-;;-
e Ad e 23%10%em 3

e VS (ug+ug)
Velocity = mobility x field

Y,
o, V= i —igsmmt, which is positive for 0= wts x

So, maximum displacement in one direction is
"

Vo . 2uV,
Xeux= J 4T sinwtd =
4

i

2uV, ;

= [, s0, o

At = my, X0

w12
Thus W= 5—17;

When the current is saturated, ail the ions, produced, reach the plate.

Y/
Then, n; - ;’-‘5} -6 x 10° em™ 5™

(Both positive jons and negative ions are counted here)

. . dn .
The equation of balance is, —-= ;- rn’
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3217

3218
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The first term on the right is the production rate and the second term is the recombination
rate which by the usual statistical arguments is proportional to " {= no of positive ions
= no. of —ve ion). In equilibrium,

dn

-’

\/ hi 7 -3
s0, Meg= ey 6 x 10" cm
Initially n = ny= Vn, /r

Since we can assume that the long exposure to the jonizer has caused equilibrium to be
set up. Afer the ionizer is switched off,

dn m?
dr
dn 1
or rdt= -—5, of, rt= —+constant
H n
1 1
But n= ngatte 0,50, rte ——-—
n n

The concentration will decrease by a factor v when
1 1 m-1

n/n ny Ry

rt,

=221 o 13 ms
rn,-

or,

Tons produced will cause charge to decay. Clearly,

. g
7 CV = decrease of charge = n,eA dt= —?Vr}

F.OV?}
;r'liec:i2

Note, that n,, here, is the number of jon pairs produced.

or, tw = 46 days

If v = number of electrons moving to the anode at distance x, then

dv
== 0V oF va vye*”

dx
Assuming saturation, /= ev,e”

Since the electrons are produced uniformly through the volume, the total current attzining
saturation is clearly,

d

d

. . ead_l
I-fe{niAdx)e“"n en,-A( p )
0

ad
Thus, j= i-n eit,-(e uﬂi)
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3.5 CONSTANT MAGNETIC FIELD. MAGNETICS

3.219

3.220

(a) From the Biot - Savart Jaw,

— My L dIxF
dB = Z;l 3 -, 50

dB = ::‘ Rda)R(as dfl?j

From the symmetry

{b) From Biot-Savart’s law :

B-%zfdlxr (here r=R+ff

So, En “&Q“I[f df;ﬁuf dﬁci’]
41
-, —
Since x'is a constant vector and | R | is also constant
So, f A% G dr)xf'- 0 (becausef di= e)
and _:f di";}?-cf RAIT
- a“?tf di= 2R

Here 7" is a unit vector perpendicular to the plane containing the current loop (Fig.) and
in the direction of X~

= MW xR i
Thus we get Bw —— e
& 4n (P +REP?
As LAOB= g;?-, OC or perpendicular distance of any segment from centre equals
R msl:- . Now magnetic induction at O, due to the right current carrying element AB
i

R cos

., X
2s8in—

L

kid

(From Biot—Savart’s law, the magnetic field at O due to any sectionsuch as AB is perpendicular
to the plane of the figure and has the magnitude.)
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As there are n number of sides and magnetic induction vectors, due to each side at O,
are equal in magnitude and direction. So,

Bsﬁg- o Zsm-n

07 4n T
Rcos

l»io ni

plys —Etanv- and for n—» o

. tan-’-‘- dx
B - _.;L_G._l_ L‘ n
o R A

3.221 We know that magnetic induction due to a straight current carrying wire at any point, at
a perpendicular distance from it is given by :

B~ —,‘:-o--l-(sinﬂl-rsin 8,),

4nr
where r is the perpendicular distance of the wire from the point, considered, and 9, is the

angle between the line, joining the upper point of straight wire to the considered point
and the perpendicular drawn to the wire and 6, that from the lower point of the straight

wire.
Here, By = By» “"g*“wwi---{cosg-rcos%}
d2ysmd
2
and 52-34-~*f-'9-—-———‘—~————(sin§+sia§)
T (@/2)cos F
Hence, the magnitude of total magnetic
induction at O,
By B, +B,+B,+B, &
? ¥
R D Wit 5 P 3
4nd/2 sin 2 ms% 1 C) ~
Y /]
g i 21
- 0-16 mT 5
ndsing %
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3.223

Magnetic induction due to the arc segment at O,
Ho §
B = -2 -
and magnetic induction due to the line segment

at g

My
41 R cos ¢
So, total magnetic induction at O,

B, = [2 sin ¢]

Wy §
By=B__+B, = SwR n-p+tangj= 28uT

{a) From the Biot-Savart law,

Yo . (d[x?)
I’ r

So, magnetic field induction due fo the segment 1 at O,

dB =

By i
Bi"“;xa(zu"@) 4
also By= B,= 0, as dﬁ?? .
z
o
and By = ypere s

Hence, By= B, + B, + B; +B,

4n a

,%{Msa]

by i3nm -
(b) Here, By = o=, B, = 0,

33 = Z—-;sm 45

P i o
B, 4nbsm45 ,

and Bs= 0
SO, Bﬁ’B1+Bz+BS+B4+B5

LMo ida oo Wi
4dna 2 4x
B,
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3.226

3.227
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The thin walled tube wilh a longitudinal slit can be considered equivalent to a full tube
and a strip carrying the same current density in the opposite direction. Inside the tube, the
former does not contribwle so the total magaetic field is simply that due to the strip. It is

Bo q/2xR)E_ Wolh
2r r 4n*Rr
where 7 is the distance of the field point from the strip.

B

i
First of all let us find out the direction of vector B at point O. For this purpose, we divide
the entire conductor into elementary fragments with current di. It is obvious that the sum
of any two symmetric fragments gives a resultant along E'shown in the figure and con-

sequently, vector E will also be directed as shown

So, [B']ndeszmp )

By . .,
=f2de:smtp

i
Ko . . £
- isinpdo, |as di= —d
fZﬁzR A ( E Ip)
0

Hence By, i/x* R

(a) From symmetry

Mo i #o 2 %>
i
0+H"R;' R+0= TR 0
{b) From symmetry <7
By= B, +B,+B; o
b ' R E
Yo i Woidm ua:[1+§__:5] 2
T 4nR 2:rtR 2 4nx R 2 o
"1

{c) From symmetry
By= B, +B,+B,

A Y Bp i  Hg i

“ xR anR "t IR TR @M

By« B, +B,

or, | B, | = "‘”\/2— = 20 n T, (using 3.221)
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— ip i man
3228 (a) Bo‘ Bl 1’32+Bs
PBo i Mo i
- Rl e L D 2R

Mo i e o
= —47‘R[2k+m}

So, iﬁf,lu%i;\/nim-o-aou'r
B
(b) Bu‘ BI+B:2+B3
i o i
“4::3{"‘)*4 “(‘)*'4:;3("’)

- ---—~-——{k+(:\t+1)t]
So,
iBo - -—---V1+(ﬂ:+i} = 34T
(¢} Herc using the law of parallel resistances

4
iy +i,=iand _— l,
)

So, il;iz'g”

Hence = 30, and iy= i

Tous By= 125 (E) 4 pei(- ;)+[ [32")3( F’)+;"§(“ﬁ)i"’?}
.- ,:‘%Qé T:-_;H)

Thus, |Bei %L, 0l puT

3.229° (a) We apply circulation theorem as shown. The current is vertically upwards in the plane
and the magnetic feld is horizontal and paralle} to the plane.

B-dl= 2Bl= p,il or, B= T
(b) Each plane contributes p, —;— between the B<
planes and outside the plane that cancel.
Thus :>
B B i between the plane P

{ 0 outside. /
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We assume that the current flows perpendicular
to the plane of the paper, by circulation theorem,

70
2B dl= py(2xdl)j E
2
]
i

or, B=p,xj, |x|s d \
A

Outside, 2B dl = py(2ddi)j
or, B= pydj |xjz d.

It is easy to convince oneself that both in the regions. 1 and 2, there can only be a circuital
magnetic field (i.c. the component B ). Any radial field in region 1 or any B, away from

the current plane will imply a violation of Gauss’ law of magnetostatics, B, must obviously
be symmetrical about the straight wire. Then in 1,

B 2nr= uyl
Ho [ I
o5 By = Znr 1
In 2, B.P-anuﬂ, or B,P-O <~ O 3
5 2
On the axis,B #olR B, along the axis
n - - .
Y
—» p.oIRZ dx
Thus, fB ‘m‘:’;"zdx' 2 R+ x5
n’2
IR? 2
= %2 f R;gc 83‘;9,0n putting x = Rtan 0
sec
x/2
- ;101% f cos0d 8= pgf
-x2

The physical interpretation of this result is that f B, dx can be thought of as the circulation

of B over a closed loop by imaging that the two ends of ihe axis are connected, by a line
at infinity (e.g. a semicircle of infinite radius).

By circulation theorem imside the conductor
By2nr= poj,xr’ or, B, pyj,r/2

= 1

: s
ie, B 3 Majxr

Similarly outside the conductor,
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B.2x i nR? of, BowipiBo
ETERNE or, Byx o Mgj, =

= 1 ~._.R?
So, B-Euo(Jij*;;

2234 We can think of the given current which will
be assumed uniform, as arising due 10 2 negative
current, flowing in the cavity, superimposed

on the true cwrrent, everywhere inciuding the ’
cavity. Then from the previous problem, by 2
superposition.

e 1 - - — 1 — -
B= —iuwx(AP-BP}- :jp.ojxl

1¢ I vanishes so that the cavity is concentric
with the conductor, there is no magnetic field
in the cavity.

3.235 By Circulation theorem,

r

B,-2nr= p.ofj(r’)xZItr‘dr'
0
or using B, = brinside the stream,

r
bt . uofj(r’)r'dr’
4]

So by differentiation,
(a+1)br* = pj(nr

Hence, jy= 20or D e
Ho
3.236 On the surface of the solenoid there is a surface current density
— A
Js=nle,
€y X Ty
—
Then, B- —-%nlffqu)dz—ﬂ—;ﬁ

T
0
where 7, is the vector from the current element to the field point, which is the ceatre of
the solenoid,
A — A
Now, -e,xry= Re,

ry= (Z+R*)V?
-2

uonl 2f dz
Thus, Bu B = x2%xR v
¢ 4x (R?+ A2
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= Pgnlsina= ponl —pomio—rr uonI/ (ZR)
V{1/2)2+R2

3.237 We proceed exactly as in the previous problem. Then (a) the magnetic induction on the

32318

axis at a distance x from one end is clearly,

dz } }—ugnmzf &
J R+ 7”2 @ +R*?
x
/2
1 1 x
—Zuonlf oosed9=2g0n1(1—-m)
n 'R

x > { menas that the ficld point is outside the solenoid. B then falls with x. x < 0 means
that the field point gets more and more inside the solenoid. B then increases with (x) and
eventually becomes constant, equal to piynl The B -x graph is as given in the answer

script.
(b) We have, 022 LIy 1
e have, ———= S|l v ———=1|= 1 ~7n
By 2 ‘/Rz+x{,2
X
or, SR S—— g, T

VR?+ x02
Since 1 is small (= 1%), xy must be negative. Thus xo= — x|

X,
and mlw—g"jmm- 1-2n

VR?+ lxciz
b o L=4n+d4n) R +]x )
0= (1-2YR?-4n(1-n)|xf

g = (1-27R
2vn{1-w)

If the strip is tightly wound, it must have a pitch of . This means that the current will
flow obliquely, partly along ¢, and partly along e, Obviously, the surface current density

Vi-(h/2xRV e

or,

is,

e
X~

_h
ZRZ
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3.239

3.240

By comparision with the case of a solenoid and a hollow straight conductor, we sec that

field inside the coil
- W iViZG2nR?

(Cf. B= pynl ).
Qutside, only the other term contributes, so

I h
B@Xana Mo 3 X 52 X 2nR

By 2
B = e
¥ d4n r
Note - Surface current density is defined as current flowing normally acrgss a unit length
over a surfuce.

o1

]

Suppose a is the radius of cross section of the core. The winding has a pitch 2aR/¥, so
the surface current density is

s

T - L

L _z, L

2aR/N ' 2ma ?

where E; is a unit vector along the cross section of the core and Z: is a unit vector along
its length.

The magnetic field inside the cross section of the core is due to first term above, and is
given by

By2nR = py NI
(NI is total current due to the above surface current (first term.))
Thus, B, = pyNI/2nR.

The magnetic field at t{:_g centre of the core can be obtained from the basic formula.

— I Js x F[T .
dB = ——;;-———%LS‘ and is due to the second term.

an g
s Fepomato L 11 pinx2
0, =Be=e 5 P p x 2na
e
or, B.= & /"\

. N
The ratio of the tw tic field, is = —
¢ ratio of the two magnelic field, is = — k/

We need the flux through the shaded area.
Now by Ampere’s theorem, R

1R A
or, B-—;io-lr //
’ $ 2 g2 /

The flux through the shaded region is,
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3.243

3.24

363
@, = f LdrB, ()

f drm[--;— o
Using 3.237, the magnetic ficld is given by,
1 x
B= Tugnl|l - o
2 ( 1/12+R2 ]

%’Bn’ where B, = p,nl,

is the field deep inside the solenoid. Thus,

At the end,B = —;—p.onfw

= %—uords = $y/2, where @ = pynlS
is the flux of the vector B through the cross section deep inside the solenid.
Bq, 2ar= u,NT
Ho N7
o b
or, Bv( 27
b
Then, @ = wahdr,as rs b= %ZNIh Inm, where = b/a

Magnetic moment of a current loop is given by p, = niS (where n is the number of

turns and S, the cross sectiondl area.) In our problem, n= 1, S= xR* and B= _‘;_g}%

2BR 2xBR’®
So, O™ AR =
Bo
Take an clement of length rd 6 containing “:“; rd0 turns. Its magnetic moment is
Nie-Za2r
7t 4

normal to the plane of cross section. We resolve it along OA and OB. The moment along
OA integrates to

f——d IdBcosB= 0 A WY
0

while that along OB gives B

]

2
=ngIsin8dB=%Nd21 0

0
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J.246

{a) From Biot-Savart’s law, the magnetic induction due to a circular current carrying wire
foop at its centre is given by,

Ho .
B, = a7

The plane spiral is made up of concentric circular loops, having different radii, varying
from a to b. Therefore, the total magnetic induction at the centre,

P 2

where -grgi is the contribution of one turst of radius » and dN is the number of furns in

the interval (r, r + dr)

ie. dN dr

“b-a
Substituting in equation (1) and integrating the result over r between a and b, we obtain,
b
i N weiN  p
a §o— dr = in—
2r (b-a) 2(b-a) a

B,

{b) The magnetic moment of a turn of radius ris p, = ixn r* and of all tums,
b

. N . aiN@E -4
p= [ paa= [ in?pHar- 3b-a)

a

(a) Let us take a ring clement of radius r and thickness dr, then charge on the ring element,,
dg=o2nardr

(candr)m=

7 Sswrdr

and current, due 1o this eclement, Ji =

s ; . o di
So, magnetic induction at the centre, due to this element : dB = _é?,_‘fi
r

R

awrdr
and hence, from symmetry :B-fdg-fy_?___;______ %QOOJR

0
(b) Magnetic moment of the element, considered,
dp,, = (di)ur2== owdrar=onwrdr
Hence, the sought magnetic moment,

R
4

3 R
P f@m {cnwrdr oon-y
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As only the outer surface of the sphere is charged, consider the element as a ring, as
shown in the figure.

The equivalent current due to the ring element,

@ . ¥ nad

di= S-Q2nrsin0nd0)0 (1) td
and magnetic induction due to this loop element / rsinl
at the centre of the sphere, O, d@ % 3

. ) . 2 A\ W

dB = _I}_q_diZRrsmBrsmB_ggdismB 3

4x 9 4 r

[Using 3.219 (b) ]

Hence, the total magnetic induction due to the
sphere at the centre, O,

n2
2. . 2
Budenfm"@w 2xnr’sinBdOsin Bo[using ]
L

4n 2= r
x/2
awr
Hence, 1‘3--\J.w0 sinaﬂdau-z—;.tocwru%?p'r
4n 3
1]

The magnetic mament must clearly be along the axis of rotation. Consider a volume

element 4V, It contains a charge .‘J.m; dV. The rotation of the sphere causes this charge

4n/3R
to revolve around the axis and constitute a current.
239 e
4xR? v 2
Its magnetic moment will be
——?—q—st x L ur® sin? O
4nR 2
So the total magnetic moment is
R =
“ff : rzsinﬂdﬁx———wwrzsmzsdrn ngx-@mxﬁixi- 1 R% @
P ITE 2 AR3ITXT 3T 5¢
o 0

The mechanical moment is

2 iR? Pm_ g
M= 5mR w, So, M o
Because of polarization a spacc charge ﬂ;ﬂs_ present within the cylinder. It’s density is
pp= —div P= - 2a
Since the cylinder as a whole is neutral a surface charge density 6, must be present on
the surface of the cylinder also. This has the magnitude (algebraically)
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3.250

opx2::Ra2auR2 or, cpaaR

When the cylinder rotates, currenis are set up which give rise to magnetic fields. The
confribution of Pp and o, can be calculated separately and then added.

For the surface charge the cumrent is (for a particular element)

OR x 2R dx x —-= a R % dx

2re
Its contribution to the magnetic field at the centre is
uoR% (@ R? @ dx)
2(*+R?Y?
and the total magnetic field is
- 2 2 4 p 4
B=f R (R mdx)‘;zﬂaR mf dx ‘;xoaR wxwg”“ ;xgaﬂzm
s 202+ R ) @+ RO 3 R?

As for the volume charge density consider a circle of radius 7, radial thickness dr and
length dx.

The current is-2ax2:trdrdxx9—= ~2ardrode

2n
The total magnctic field duc to the volume charge distribution is
2 R
B,= _fdrfdxzmm 2)3,2 famorar [auts
+r
¢ B

= -fapomrder-: -ueamR so, B=B +B,=0

. . g e T,
Force of magnetic interaction,F,,, = e{(vx B}

— M,
Where, B= =2 M

4x rs

—

P s o
So, Frope = an 3 [Px @xr}]

3"9- LT <mm=——<- 257

And P eb-e it T
ele N 84‘!{60 s
%“ 2
Hence, ..L,.."’f.é’i,, ~ Vg Eg = (.‘.’..) - 100 x 107°
VF greciic | ¢
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(a) The magnetic field at O is only due to the
curved path, as for the line element, 41141 r.

. A A
— pl.o ! i Eg_l i g
Hence, B 4nRK{_k) AR (-k) ‘I.
—» - i.tﬁfz —» !
Thus F,= iB(-j)= IR -i)
R
So, F, = X2 020 N/ U > X!
o, F, = —p= m |
(b) In this part, magnetic induction Bato é ‘
will be effective only due to the two semi
infinite segments of wire. Hence b g{
— L
a2 n X )
([ 2 3
4n | -> -
2 B
mol B 01 !
nl .
Thus force per unit fength, N > X

|
F -2

nl

Each element of length dl experiences a force Bf di. This causes a tension T in the wire.
For equilibrinm,
Tdo= Bldl,

where de is the angle subtended by the element
at the centre.

Bldl

Then, T= BI&%= BIR
The wire experiences a stress
BIR
nd?/4

This must cquals the breaking swess o, for
rupture. Thus,
nd’o,
Boux™ 7R
The Ampere forces on the sides OP and O' P are directed along the same line, in opposite
directions and have equal values, hence the net force as well as the net torque of these

forces about the axis OO’ is zero. The Ampere-force on the segment PP’ and the cor-
responding moment of this force about the axis 00’ is effective and is deflecting in nature.
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3.254

3.255

In equilibrium (in the dotted position) the >
deflecting torque must be equal to the restoring B ’,/"r
torque, developed due to the weight of the -7
shape. /),’/ i
Let, the length of cach side be ! and p be 0 _}
the density of the material then, | gl
i!B(lcosB)-:(Slp)glsin9+(slp)gisin9 J\ ‘
2 ; §  Ysigg)
+(SIp)glsin® | L B
|
or, i12Bcos@= 25 pgl®sin 0 .ﬁ@f 7 Yy,
i
Hence, B = Mtan 4] \ L
t | ,JP'
We know that the torque acting on a magnetic dipole. P ,/Sl}’ﬁ us

i e
N = E): x B
But, j): = iSn ,» where n is the normal on the plane of the loop and is directed in the

direction of advancement of a right handed screw, if we rotate the screw in the sense of
current in the loop.

On passing a current through the coil, this torgue

Ll
acting on the magnetic dipol, is counterbalanced N !
by the moment of additional weight, about O.

Hence, the direction of current in the loop must P"“,_i O ) r\\

be in the direction, shown in the figure,

““]! 0 A
ﬁ:‘xE‘-mi—;Amf S |

[

NG

or, NiSB= Amgl
Amgl .
So, B= = (-4 T on putting the values.

NiS

(a) As is clear from the condition, Ampere’s forces on ihe sides {2) and (4) are equal in
magnitude but opposite in direction. Hence the net effective force on the frame is the
resultant of the forces, experienced by the sides (1) and (3).

Now, the Ampere force on (1),

1
bo iy e—na—
YA 2
173 _ l
and that on (3), . A ! 3
- IoA E
Fow X0 _to! { |
37 2n R { Yi
So, the :esuhant- force on the frame E
o iy

= F, - F,, (as they are opposite in nature.)

N
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2wy iy
TR
(b) Work done in turning the frame through some angle, A = [id® = i (@, - ®,), where
@, is the flux through the frame in final pusition, and &, that in the the initial position.

0-40 u N.

Here, @)= |®]= & and &« - @,
$0, Ab=2% and Aw» i2 P
Hence, A= 2if§?d§’

1
a(n+~i}
E‘li‘lﬁd u‘)iiﬂaln(zn*ll

= mr T TR m-1

-3

There are cxcess surface charges on each wire (irrespective of whether the current is

oy
flowing through them or not). Hence in addition to the magnetic force F_, we must take
—
into account the electric force F, Suppose that an excess charge A corresponds to a unit

length of the wire, then electric force exerted per unit length of the wire by other wire
can be found with the help of Gauss’s theorem.

2
12 2N , (M
dme, 1 dmegl

F,= AE= &

where [ is the distance between the axes of

the wires. The magnetic force acting per unit ~ Tt FrEEE s
length of the wire can be found with the help %

of the theorem on circulation of vector B =
5 l E ~ R
F . Hu2i Fe
™ 4x I’ 4
. O———————=
where { is the current in the wire, (2) F

Now, from the relation,

A= C g, where C is the capacitance of the wires per unit lengths and is given in problem
3108 and p= IR

MEg | _l_ Inny
kglnnLR A ney R )

i

Dividing (2) by (1) and then substuting the value of Y

Fy _ o (nn)?

F, g ;q,igi

from (3), we get,

The resultant force of interaction vanishes when this ratio equals unity. This is possible
when R = R, where
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3.257

3.258

3.259

~
Ry= V22 }n}n, 0-36 kQ
(]

Use 3.225
The magnetic field due to the conductor with semicircniar cross section is

Then — = Bf =

We know that Ampere’s force per unit length on a wire element in a magnetic field is
gi_\.;en by.

oA A
dF = i(nx B) where n is the unit vector along the direction of current. (1)

Now, let us take an element of the conductor i

!
1
T

oo st e it e sevsmanmmins i e 18 i

iy, as shown in the figure. This wire element
is in the magnetic field, produced by the current
{,, which is directed normally into the sheet
of the paper and its magnitude is given by, Ii "

— "‘011
IBiH Ynr (2 e { T

g
Wy
ro

D.—"'*-—-—-—m——na-—.-

T
l

From Egs. (1) and (2)

— I A wne I
dF,= - dr(nxB), (because the current through the element equals fdr)

= W Il dr AP
So, dF,,-=2“ 5 r,towardslcft(asn.!. B).

Hence the magnetic force on the conductor :
a+h

= Wil dr b, a+vb
S Helifa p dr -2, 40 ds left).
F, s » (towards left) s In - {(towards left)

a
Then according to the Newton’s third law the magnitude of sought magnetic interaction
force
s I 1 arh
2nb a
By the circulation theorem B = 1,

where { = current per unit length flowing along the plane perpendicular to the paper. Currents
flow in the opposite sense in the two planes and produce the given field B by superposition.
1

> B. The force on the plate is,

The field due to one of the plates is just
1 B?

= 8B x ix Length x Breadth = —— per unit area.
2 2Hy

(Recall the formula F= Bl on a straight wire)
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ar71

B, +8,
2 3

(a} The external field must be
B, -B,
2

whick when superposed with the internal field

(of opposite sign on the two sides of the plate) must give actual field. Now
B, -8, 1 ;
2 T2t
B, -8B,
Ho
312 - 322
Fa ——=
24

or, i=

Thus, B B2

B, +B,
2

B, -
2
on the left and dewnward on the right. Thus,
B +B B?-B}
j= —t 2 apd F= L%
Ho 2u,

{¢) Our boundary condition following from b

2 upward with an internal field,

(b) Here, the external field must be , upward

LA AA Y vy

Gauss’ law is, B, cos 0, = B, cos 0,

Also,(B,sin 0, + Bysin 8,) = p,y i where
i = current per uril length. By Bz
B, sin 8, - B, sin 6,

2

The external field parallel to the plate must be

(The perpendicular component B, cos 8,, does
not matter since the corresponding force is
tangential)

B/ sin® 0, - B, sin’ 8, .
Thus, F= om per unit area
Ay

& A

B?-B}?
21y
The direction of the current in the plane 32“‘*\

conductor is perpendicular to the paper and B
beyond the drawing.

per unit area.

The Current density is ;%, where L is the Jength L
of the section. The difference in pressure 7

produced must be,

1 IB
Ap = oL x Bx(abL)/ab = -
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3.263

1.2¢4

Let t= thickness of the wall of the cylinder. Then,
J= I/2n Rt along z axis. The magnetic ficld due to this at a distance 7

t ry . .
(R—2 <r <R+2), is given by,

I 2 _!_2
SR

P~ -1/2)*} R+ %

% Po= TRRTT

iy — —
Now, F-f]deV

R
and = o . f kol rz—R--j-2 x2narLdr
P=3%RL"2xRL J s2R%:%, 2
t
R-3
Ra— 3 3
2 { t
R+ -
s gl [ O
8 R3¢? 2 8P R t? 3 2
4
R-3
%12 X 0(2) MOIZ
- t+0(t) ]~
SFRjt[ ] 8w R’
When seif-forces are involved, a typical factor of -21~ comes into play. For example, the

force on a current carrying straight wire in a magnetic induction B is BIl If the magnetic
induction B is due to the current itself then the force can be written as,
I

F-fa(p)drz
1]

1B (') oI, then this becomes, F = %B nIL

In the present case, B () = po#/ and this acts on »/ ampere turns per unit length, so,
1 Ixnfx1xl 1

2,2
Area ~ ZP TR =“”2-”""&[

The magnetic induction B in the solenoid is given by B = pgnl. The force on an element
dl of the current carrying conductor is,

dF = Spgnildi= < ponl®dl

pressure p =

This is radially outwards. The factor %— is explained above.
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To relate dF to the tensile swrength F we

proceed as follows. Consider the equilibrium
of the element dl. The longitudinal forces F
have a radial component equal to,

F
dF = wsmi’z@, Fdo

Thus using /= Rd0, F= 2y ni”R

2 Fl‘sm
This equals F, when, /= I = V BB

Note that Fy, , here, is actually a force and not a stress.

3.265 Resistance of the liquid between the plates= %
Voltage between the plates = Ed = v Bd,

Cutrent through the plates w vBd
pd
R+
\Y
Power, generated, in the external resistance R,
pn VBdR VB d* v B2 d?
I 2= 2 2
R+ B4 VR + £ 12 1/
( S ) ( SYR rRVA_ (-2 2Vl
SVR - §
o : pD v'Bsd
This is maximum when K = S and P = Tap
3.266 The electrons in the conductor are drifting with a speed of,
J I
vd L

ne  xR*ne’
where ¢ = magnitude of the charge on the electron, 7 = concentration of the conduction
electorns,

The magnetic field inside the conductor due to this current is given by,

A radial electric field vB_ must come into being in equilibrium. Its P.D. is,
R

2
I W Ir I [(He po !
A = nmrmsnsmmrarrrs s v (A s | e f 1o me————
® f:tR2ne?ﬂR2 g ;r:Rzne(‘m) 4R ne
o

-
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3.267

3.268

3.269

Herey, = % and j= nev,
200x10“—A;><1T
m

B
so, n= - V/m
eE 16x107YCx5x107*

= 25 x 1058 per m® = 2:5 x 107 per ¢.c.

Atomic weight of Na being 23 and its density = 1, molar volume is 23 c.c. Thus number
6 x 107
23

Thus there is almost one conduction electron per atom.’

of atoms per unit volume is = 26 %107 perc.c,

. . dirft velocity v
By defiuition, mobility = Electric field component causing this drift or

On other hand,
E;= vB= E:':,’ as given so, pu= 1. 32 x 1072 m¥/(V - s)
n nB

I

Due to the straight conductor, B = %—
— — TP —

We use the formula, F=(p  V)B

{a) The vector p,, is parallel to the straight conductor.

—

- 3
Fepys B=0,

el
because neither the direction nor the magnitude of B depends on z
(b} The vector E,: is oriented along the radius vector o

F-p, 28
= Pmyy
The direction of B at 7 + dr is parallel to the direction at » Thus only the ¢ component
—
of F will survive.
P 3wl welp,
©% Prr I T T o
{c) The vector ﬁ; coincides in direction with the magnetic field, produced by the conductor
carrying current [
—
- Mol o> olPm 3%
Prvop 21 %07 2n? 9

So, = -
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3270 F,.=p, g}me

MoIRz

wol Rdl
But, Bx-— f(x2+R2)3/2

Wo I2xR% 3

) e e s
° A e R 22

bd

Ho Schzfpmx
4n (x2+R2)5/2

327

d

3.272 From 3.270, for x >> R,

22 +RY?

2 p,,

0
F= P?'"al[l?"

B =

i

Pim

Po Prni
2n 3

2B.X  2x3x1075Tx (10"  m)p

3.273
B = Bcosq,

H, = 1p sin o,

=B sina

S0

T wRY . 126x 107 x (10 2m)*

B = B\/p.zsinza+cos

3.274 (a)ﬁ ﬁ‘d?&ﬁ (ug-q-d?ﬂ «-4" ?d&? since§
0

Now J is ronvanishing only in the bottom half of the sphere.

2a

Py

—-b-y -
rr -
5

:m:‘i Ko P1m Pom
2 nit

2):3

=~ 0-5 kA

= 9 nN

P

\
=

i

-3, 7

4

i
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3.276

Here, B, = Beos 0, H = -}“Bsin 8, B = uBsinb, H = icosﬂ
Ko Eibhg

=88y 1) . Bdlpgie.
Ho n Mo

Oualy J, contributes the surface integral and

- — N 2
__,§ J‘dsz-f J.dsgf Jndssﬂ—ﬂs—e-(lu—l—)
lower lower ) Ho H
®) § F-df=(B,-B,)i= (1-wBIsing

Inside the cylindrical wire there is an external current of density W This gives a magnetic

field H,, with
H 2nr=1 r’ or, H. = 2

¥ RZ 7 % 2aR?
Witg Ir w=11r xlIr

——-——R2 and J‘p o E—f Py

Hence total volume molecular current is,

§ Jd?:afwx»»««dl

The surface current is obtained by using the equivalence of the surface current density to

x
2nR

From this B, = = Magnetization.

-
J x n, this gives rise to a surface current density in the z-direction of —
The total molecular surface current is,
/i
F= -2 Ry = -yl
i= =g QnR) = -y

The two currents have opposite signs.

We can obtain the form of the curves, required here, by qualitative arguments.

— e
From ff Hdl= 1
we get Hx>>0)= Hx<<()=nl
Then B{x>>0)»= pup,nl

B(x <0)= pynl
Also,
Bx<0)= p, H{x<0)
J{x<{0)= 0
B is continuous at x = 0, H is not These give the required curves as shown in the answer-
sheet.



3.277 The lines of the B as well as H field are circles around the wire. Thus

3.278

Hynr+Hynr=1 or, H+H,= ;I;

Also ol Hy = wy Hypg= By = By= B
Thus H = m*m““*{-,
W, + [y ey b
Wy I U7

“1!”'2 I /
d = oo s
an B p"plﬂhnr

Hz*

377

Uz

The medium I is vacuum and contains a circular current carrying coil with current I. The
medium I is 2 magnetic with permeability p. The boundary is the plane 2= 0 and the
coil is in the plane z= [ To find the magnetic induction, we note that the effect of the
magnetic medium can be written as due to an image coil in II as far as the medium { is
concerned. On the other hand, the induction in II can be written as due to the coil in I,
carrying a different current. It is sufficient to consider the far away fields and ensure that

the boundary conditions are satisfied there. Now for actual coil in medium [,

Bx
Br AX
BQ‘\%’ é ¢

Bg 8

9 o' /M8

T\T I \J

-
Lt

2p,, cos 6’ Ho P,5in 0 (g
Bra - r3 4nf 6~ rs 4n
so, B,= pﬁp’” —2Z2 (2 cos® @' - sin” @) and B_= FOP"' {~ 3 sin 0’ cos ©)
where Pn=I(x @*), a = radius of the coil.

Similarly due to the imagtL: coil,

B, = u"P — 2 (2cos’ 0 —sin” 0), B, = “‘;P . (3sin@ cos O), p',, = I (na”)

As far as the medlum Il is concerned, we write similarly
B,= Mo:’ m %P m

{Zcos 9’-—sm 8), B.= —(-3sinB cos0),p" = 1" (na?)
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3.279

3.280

3.281

3.282

3.283

The boundary conditions are, p, +p' = p”, (from B, = B,)

r 1 "
“PutP = -;p o (from H,, = Hy)

Thus, a2 opo kol
p+l p+l
In the limit, when the coil is on the boundary, the magnetic field enverywhere can be

obtained by taking the current to be _...ILM2+ 1 1. Thus, B= -—&—-Mi n ;9;

We use the fact that within an isolated uniformly magnetized ball,
—_

— — 2}191 —
Ho= -J/3 B'= 3 where J is the magnetization vector. Then in 3 uniform magnetic
-
field with induction B, we have by superposition,
B el

—~ g7 - B
B, = By+ == Hy= 22773

m

—» ol —» Ho
of, B, +2p,H, =38,
also, E; = !“oﬁm
- 3B 3uB,
0 P )
. DU e—— d . W
Thus, H, TR and B, Y

The coercive force H, is just the magnetic field within the cylinder. This is by circulation

theorem, H, = {V_I_{ = 6 KA/m

.
{from f Hdr= I, total current, considering a rectangular contour.)

— R H
We use, § Hdl=0 e

Neglecting the fringing of the lines of force,

we write this as l B

Hind-b)+2b=0
Ho

- Bb
Mo 7d

The sense of H is opposite 1o B

or, H=

= 101 A/m

—_ Bb NIH-Q*Bb
Hcre,ff Hdl= NI o, HRR)+Z= NI, 50, Hwm e
By 2RR py

B 2aRB
R WH wNI-Bb

Hence, = 3700

One has to draw the graph of = versus H from the given graph. The p - H graph

B
g H
starts out horizontally, and then rises steeply at about i = 0-04 k A/m before falling agian.
It is easy to check that p_, = 10,000.
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—
From the theorem on circulation of vector H .

Hrd+BEo NI o po B to%d
Ho b b
where B is in Tesia and H in kxA/m. Besides, B and H are interrelated as in the Fig. 3.76
of the text. Thus we have to solve for B, H graphically by simultaneously drawing the
two curves (the hysterisis curve and the straight line, given above) and find the point of
intersection. It is at

H = (1-51 - 0-987) H,

Hw 026 kA/m, B= 1-25T
~ 4000,

B
Then, =
u NQH
From the formuia,
— T e - — —>
F= (pm-V)B—'F-Pf(J-V)Bd’V,
Thus F= —Z—I(W)E’JV
iy

—i
or since B is predominantly along the x-axis,
vi

3B *- b 2
oo X 5 rgg B g AE ASE
"y dx H 2y 2
The force in question is,
F = . V\B =242 22
(p,,, ) Hig dx
since B is essentiatlly in the x-direction.
2w BV By
So, FmAVA_ X0 "4 redy . gpew 2y
24, dx 2;10 21,

This is maximum when its derivative vanishes

i
ie. 16a°x ~4a= 0, or, x = ~==
™ Y4a

The maximum force is,

1 _i/sz 1% xBO v
F__ = 4a V
e Vaa pAT Mo

So, X~ (%Fm‘\/f ] / VB2 = 36 x 107

Fow (7-V)B, « X8V B _ xV dB*

x Py x W Hg dx 2“0 dx
This force is attractive and an equal force must be applied for balance. The work done
by applied forces is,

xm L
V]
A = f -F dx= _Z___( Bz ﬂg_
24y

=0
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3.6

3.288

3.289

3.290

ELECTROMAGNETIC INDUCTION. MAXWELL’S EQUATIONS

Obviously, from Lenz’s law, the induced current and hence the induced e.m.f. in the foop
is anticlockwise.

From Faraday’s law of electromagnetic indcution,
do ®. Ay
8= oo B
Here, d®=B-dS= -2Bxdy, R
‘ a

and from y=a.x2,x==‘v£- \ T

- y dy
Hence, &, = 2B P

/ > X
= By %‘?—, using %m V2wy 0

Let us assume, Bis directed into the plane of the loop. Thea the motional e.m.f,

E = U'..(Jlﬁi-df" = vBI :
and directed in the same of (v'’x B) (Fig.) _L R Ro
So. . _  Bm Bvl &, Rr 1Ry
' R, R, R+R, Ri
R + o
R, +R,

As Ry and R, are in parallel connections.

(a) As the metal disc rotates, any free electron also rotates with it with same angular
velocity o, and that’s why an electron must have an acceleration w’r directed towards the
disc’s centre, where r is separation of the electron from the centre of the disc. We know
from Newton’s second law that if a particle has some acceleration then there must be a
net effecetive force on it in the direction of acceleration. We also know that a charged
particle can be influenced by two fields electric and magnetic. In our probicme magnetic
field is absent hence we reach at the conslusion that there is an electric field near any
electron and is directed opposite to the acceleration of the clectron.

If £ be the electric field strength at a distance r from the centre of the disc, we have from

Newton’s second law.
F,= mw,

eE=mrm2, o, F= s

and the potential differencc

a

Peen ™ Prim ™ fEdf f

8

Ldr, as Etyd7
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mmz a2

p "2"'= 30V

-3
{b) When field B is present, by definition, of motional eant. :
2

q>1——q)2==f—(?x§))-d?
1
Hence the sought potential difference,

Thus Poen — Prim ™ A P=

a

a
tpcm-—cpﬂ-m-f-der-f-mrBdr, {as v= wr)
o 0

Thus Drim = Poen ™ @ = -;-wBa2= 20 mV

(In general w < % so we can neglect the effect discussed in (1) here).

By definition,

E= - (VX B)

c < d
So, ff-dﬂf-(ﬁﬁ')-dnf-yadr
A A 0
But, v= wr, where r is the perpendicular distance of the point from A.
c d
gl 1 2
Hence, [ E-di> [-wBrdr=-20Bd*~ -10mVv
A 0

This result can be gencralized to a wire AC of arbitary planar shape. We have

C C [
fE’-d;-—f(?xé’)-drw-f((mxr) x B)-dr
A A A

g-f(*.;*;-**.;;a.d;“’

A

i
= - -i*BUJdZ,

d being AC and rt being measured from A.
Flux at any moment of time,
—_—  —» 1 2
|, |= 5" a5]= B(-z-ﬂ zp)

where ¢ is the sector angle, enclosed by the ficld.
Now, magnitude of induced e.m.f. is given by,
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g - |90] | [BR2de
in dt 2 at

where @ is the angular velocity of the disc. But as it starts rotating from rest at t = 0 with

an angular acceleration P its angular velocity @ {1} = ft. So,

BR2
gu= B p
According to Lenz law the first half cyc]c current in the loop is in anticlockwise sense,
and in subsequent half cycle it is in clockwise sense.

BR2

Thus in general, §, = (- 1)" B t, where » in number of haif revolutions.

The plot §,, (1), where ¢,= V2 nn/p is shown in the answer sheet.

3.293 Field, due to the current carrying wire in the region, right to it, is directed into the plane
of the paper and its magnitude is given by,

Yo § . . : .
B= Eﬁi where r is the perpendicular distance from the wire,

As B is same along the length of the rod thus motional e.m.f.

2
- -f(‘?
i

—y -
and it is directed in the sense of (vx B)

So, current (induced) in the loop,
g, 1 polvi

I, = = o

“ R 2mARr

I

x
=

}-d =vB |

3294 Field, due to the current carrying wire, at a perpendicular distance x from it is given by,

B(x)= yot

—_ = —p
Motional e.m.f is given by ~{(vxB)-di

There will bc no induced e.m.f. in the segments (2) and (4)
as, V11 dland magnitude of e.m.f. induced in 1 and 3, will be

o f u .
g = v("z—i-i)a and §, = v( . (aix))a

respectively, and their sense will be in the direction of (v x B ).
So, e.m.f, induced in the network = &, -5, {as §; > &; ]

avigify 1 valpyi
T 2n [x“a+x]"23tx(a+x)
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As the rod rotates, an emf.
41 20 p L2
Z2° ¢-B i Bow
E(t)--;-azBm
R

A magnetic force will then act on the conductor of magnitude BI per unit length. Its
direction will be normal to B and the rod and its torque will be
a

E@a%me
o

Obviously both magnetic and mechanical torque acting on the C.M. of the rod must be
equal but opposite in sense. Then
for equilibrium at constant

12
§0-3480 pa .
= $5= o mgasin of

is induced in it. The net current in the conductor is then

o, E{)= }iasz+~%& sit @ f = ﬁ(dsBzwd’ngRsinmt)

(The answer given in the book is incorrect dimensionally.)
From Lenz’s law, the current through the connector
is directed form A to B. Here &, = vBl between

A and B -
where v is the velocity of the rod at any moment.

For the rod, from F,= mw,

or, mgsino~ilB= mw

For steady state, acceleration of the rod must
be equal to zero.

Hence, mgsina=ilB H
. & vBli
But, i= R~ R

From (1) and (2) v= _mw%%i

From Lenz’s law, the current through the copper
bar is directed from 1 to 2 or in other words,
the induced crrrent in the circuit is in clockwise
sense,

Potential difference across the capacitor plates,

g, o g=CE,
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Hence, the induced current in the foop,
i= %, ¢ 25
dt dr
But the variation of magnetic flux through the loop is caused by the movement of the bar.
So, the induced em.f. E, =B lv

dE, dv
and, _d}—= BIE= Blw
Hence, i= C%rga CBlw

Now, the forces acting on the bars are the weighi and the Ampere’s force, where

Fo,= ilB(CBIW) B= CI’B w.

From Newton’s second law, for the rod, F_= mw,

OF, mgsina ~CI°B*w= mw
Hence wo mgsma___gsig
Cl*B +m I“B°C
L

—
Flux of B, at an arbitrary moment of time ¢ :
2
= B-S= Bmiwcosmt,

From Faraday’s faw, induced em.f, §, = — %

dt

f
d(Bnmzwcosth
= - -—Bnazmsinwt
dt 2 )

2
. . S« Bmna ,
and induced current, i 2 = o sin w &

= RT 2R
Now thermal power, generated in the circuit, at the moment £ = ¢ :

2
2
P(t) = ginxil'n: (W) }wsinzwt

R
and mean thermal power generated,

2 T
22| & funtoca
2 R 0 1

<P>= F - = 2B 5
nwda
[ a3
0
Note : The claculation of E, which can also be checked by using motional emf is correct
even though the conductor is not a closed semicirele , for the flux linked to the rectangular

part containing the resistance R is not changing. The answer giver in the book is off by
a factor 1/4.




3.29%

3300

33

385

The lux through tbe coil changes sign. Initially it is BS per turn.

Finally it is - BS per turn. Now if flux is & at an intermediate state then the current at
that moment will be

R
So charge that flows during a sudden turning of the coil is

g= [idi= -%{(I)%AI))]* 2NBS /R

Hence, B= ”L 5T on putting the values.

ZNS puting
According to Ohm’s law and Faraday’s law of induction, the current i; appearing in the
frame, during ifs rotation, is determined by the formula,

dd Ldi
!0= ———— e

ot dr
Hence, the required amount of clectricity (charge) is,

g= [igdim -2 [@O®+Ldi)= -5 (AD+L i)

R
Since the frame has been stopped afier rotation, fe— b 10
the cuirent in it vanishes, and hence Ay = . B S 1
]
It remains for us to find the increment of the T :
flux A & through the frame (A ® =« &, - @,). a I
h 4 !
Let us choose the normal n'to the plane of the t H
frame, for instance, so that in the final position, }
#”is directed behind the plane of the fi . 2N !
n'is directed behind the planc of the figure a o
(along B ).

* Then it can be easily seen that in thc final position, ®,> 0, while in the initial position,

®, <0 (the normal is opposite to B b and A ® tumns out to be simply equal to the fulx
through the surface bounded by the final and initial positions of the frame :

b+a

AP =&, +|d|= fBadr,
b-a
where B is a function of r, whose form can be easily found with the help of the theorem
of circulation. Finally omitting the minus sign, we obtain,
a2 Hodi bra
9" R " 2xR "b-a

—
As B, due to the straight current carrying wire, varies along the rod (connector) and enters
linerarly so, to make the calculations simple, B is made constant by taking its average
value in the range {g, b},



386

3302

-
b b B®
Wg I P
Bdr zx_d R A
-
<Bom nb - g 5 E’m(——_’v_’
Ly [
ext
fdr fdr x > X
[ a
_ a (b
or, <B>m -E-g'--—-l—ﬂ——-lng <
’ 2n(b-a) a fo

(a) The flux of B changes through the loop due to the movement of the connector. According
to Lenz’s law, the current in the loop will be anticlockwise. The magnitude of motional

e.m.f,
E,=ve<B>(-a)

we o b dey Mo
R R P
So, induced current

. b
Lyin—v
a

Ex Mg kv, b
i, ® o om e e gy

“= R 2rn R a

(b} The force required to maintain the constant velocity of the connector must be the
magnitude equal to that of Ampere’s acting on the connector, but in opposite direction.

; Bofo | b By kb
So, Fm=thl<B>s(2valna)(b a)(’l:rt{b—a)]na)

2

vi{lo . b . . . .
- F(Z - igln " ) , and will be directed as shown in the (Fig.)

(a) The flux through the loop changes due to the movement of the rod AB. According to
Lenz’s law current should be anticlockwise in sense as we have assumed B is directed
into the planc of the loop. The motion em.f§, (¢)= Blv

and induced current i, = Xng— , A
From Newton’s law in projection form F, = mw, ‘Ub
v dV o
™ RS Famp<TBe
. vBI®

But F,. = i,lB= B
vB?1? dv

So, — — . ] Y

R dx



3.303

3304

387

mRv,
B

or,

x 0

fdx- »%fdv or, X
Bl

[ Vg

(b) From equation of energy conservation; E, ~ E; + Heat libcrated = A, + A,

[Om%m v02]+Heat liberated = 0+ 0

So, heat liberated = }—m vo2

2
With the help of the calculation, done in the previous problem, Ampere’s force on the
connector,
vBI?

ampT TR directed towards left.

P

Now from Newton’s second law,

dv
F-—Fam*m“&? g @ R
2,2 —y >
So, F= YEL ,dv Epp, €T F
R dt amp
4 ¥ -‘}v
dv -
\ dr = mf
oF -!- 0 F_VBZIZ B
R
Fo B
o1, Lo R in R
’ m B’ F
-t B4*\ RF
Thus V= (1 - e Rm )lez

According to Lenz, the sense of induced e.m.f. is such that it opposes the cause of change
of flux. In our problem, magnetic field is directed away from the reader and is diminishing.

(@) (6) () (d)

So, in figure (a), in the round conductor, it is clockwise and there is no current in the
connector

In figure (b) in the outside conductor, clockwise.
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In figure (c) in both the conductor, clockwise; and there is no current in the connector to
obey the charge conservation.

In figure (d) in the left side of the figure, clockwise.

The loops are connected in such a way that if the current is clockwise in one, it is anticlockwise
in the other. Hence the e.mif. in loop b opposes the e.am.f. in loop a.

. d. 2 24 p
ean.f in loop a o (a>B)= a o (B, sin wi)

Similarly, e.m.f. in loop b= b° B, o cos ot

Hence, net e.m.f. in the circuit = {a° - b%) B, w cos wt, as both the e.m.f’s are in opposite

sense, and resistance of the circuit = 4{a+b) p

Therefore, the amplitude of the current
(@-HByw

asbp " USA

The flat shape is made up of concentric loops, having different radii, varying from 0 to

a.

Let us cg:zsidcr an clementary loop of radius r, then e.m.f. induced due to this loop

_-d{B-S)
dt

and the total induced e.m.f,,

= nur?Byw cos wt.

a

gwmf(:m r?Byw cos wt) d N, ¢y
0

where 7 r2 @ cos wr is the contribution of one tum of radius r and dN is the number of
turns in the interval |r, r + dr].

So, dN= (%r) dr (2)

% By o cos v tNd*
3

From (1) and (2), &= [ - (xrByo cos o) L =
1]

Maximum value of e.n.f. amplitude E_, = ;—:::Bo oNd

—
The fux through the loop changes due o the variation in B with time and also due to the
movement of the connector.

—
So, B d(fft‘S) - 1‘{(35) asS and Bare eollinicar
But, B, after ¢ sec. of beginning of motion = Bt, and 5 becomes = / 1 wrz, as connector

2
starts moving from rest with a constant acceleration w.

So, g = %Bzwﬁ
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We use B= uynl

Then, from the law of electromagnetic induction

—. dd
f Ealz &

So, forr<a

E2nr= -:rerpﬁn;’ or, £ = -%gonrj. (where I = dl/dr)

For r>a

El2nr= —:razuenj o, E = —u.onf-az/Zr
The meaning of minus sign can be deduced from Lenz’s law.

2

The e.m.f. induced in the tum is nin %—

The resistance is ggép.

uonISd

ip = 2m A, where p is the resistivity of copper.

So, the current is
The changing magnetic field will induce an e.m.f. in the ring, which is obviously equal,
in the two parts by symmetry (the e.m.f. induced by clectromagnetic induction does not
depend on resistance). The current, that will flow due to this, will be different in the two
parts. This will cause an acceleration of charge, lcading to the setting up of an electric
field E which has opposite sign in the two parts. Thus,

g—:ﬁaﬁ'n ri and §+naE= nri,

2 T2
where E is the total induced e.m.f. From this,
E= M+ 1)1,

. - n-1
and E- 2:::1(“ 1)rl= Znand-lg
But by Faraday’s law,E = n a*b

- Ll,pn-1
50, =3 ab nel

Go to the rotating frame with an instantancous angular vélocity ® (¢). In this frame, a
Coriolis force, 2m v x @ {£) .
acts which must be balanced by the magnetic force, e V'x B (1)

Thus, @)= 'E%F(t) X

(It is assumed that @ is small and varies slowly, so ®” and @ can be neglected.)
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33

3313

3.314

The solencid has an induétance,
L= p,rnb?l,
where # = number of turns of the solenoid per unit length. When the solenoid is connected

to the source an e.m.f. is set up, which, because of the inductance and resistance, rises
slowly, according to the equation,

RI+Li=V

This has the well known solution,
v —tR/L
I R {1-¢ ).
Corresponding to this current, an e.m.f. is induced in the ring Its magnetic field
B uynl! in the solenoid, produces a force per unit length, - Bi= uon xa” /v
wma’ V2,
B r RL}€
acting on each segment of the ring. This force is zero initially and zero for large ¢ Its
maximum value is for some finite . The maximum value of

2
_uva/r_)H }ﬁ_(}n“e—tﬂ.&) .1

-t R/L -1 R/L
g (1"6 ! ),

e~ (1-e

4712 sy

dF,, wndv? 2 o a* V2

So dl r ARL T 4rRIb?

The amount of heat generated in the loop during a small time interval 4,

dQ = E/Rdt, but, & = —%‘3- 2at-ax,
2
So, dQ = Eﬂfﬁ.ﬁﬂm

and hence, the amount of heat generated in the loop during the time interval 0 to 1.
f(zat—a'c)zd 1 02173

Take an elementary ring of radius r and width dr.

dt

The e.m.f. induced in this clementary ring is n 7 B.
Now the conductance of this ring is.

d(ml—-)- hdr o dI= hrdrﬁ

R| p2xnr 2p

Integrating we get the total current,
b

hrdr, hB{(p -d%
! f 2p p 4p

a
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3.315 Given L = py 7V T n* L=xR 2 , where R is the radius of the solenoid.

L1
wolom R’

Thus, "

So, length of the wire required is,

.‘/41151.!0
I=nl,2nR= = 010 km.

g

3.316 From the previous problem, we know that,

I'= length of the wire neededm V £ !I:‘ z , where = length of solenoid here.
o

ll’
Now, R = B%m, (where S = area of crossection of the wire. Also m= pSI)

Thus, I’=§~§~— Rm or I'= VM

Po PP PPy
where p, = resistivity of copper and p = its density.
Equating —iR-’—n—m Ll

’ PPy /4T
or _ Mo mR
’ © 4mppyl

3.317 The current at time f is given by,

1= @ -e"™)

The steady state value is, Jj= %{C

and L(-fl=n=l-e“m"‘or,e"'m"'al—n
Iy
or, : R In o, ,==<lIn = 1-49s
’ °L 1- ¢ R T 1-m
3.318 The time constant T is given by
Lo L
R I’
Pos
where, p, = resistivity, [; = length of the winding wire, § = cross section of the wire.
But m=1lp, §
L mlL

So eliminating St = 1
Poly PPg Iy
m/ply
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3.319

3.328

3321

From problem 3.315 [ = 4 iw
]
(note the interchange of / and [ because of difference in notation here.)
Thus, t&mma"‘"%ma Po 4R mt=(}-7ms,
ppo L P Po
o
Between the cables, where a < r < b, the magnetic field I? satisfies
I
HrPZ:tra I o Hvz >y
# g/

So B, = py.

re b

. . ) ol Rigl b

The associated flux per unit length is, P = f T Ixdr= S In pe

r=a

I
Hence, the inductance per unit length L, = -}22 %}—gln 1, where 1= %
We get L, = 0-26 %{i
Within the solenoidH 2xr= NI or Ham B = —
ithin olenoid,H w= 5o Be= wo
a+d
TN
and the flux,®= NP, = N 2 NT adr
2n r
b
. Uiy 2 a

Finally, L= Cr N'ailn (1 + b)

Neglecting end effects the magnetic field B,
between the plates, which is mainly parallel

to the plates, is B = uﬂ%

(For a derivation see 3.229 b)

Thus, the associated fux per unit length of the
plates is,

D= uﬂ%xhxla (pa-g-)xf.

So,L; = inductance per unit length = uﬂg = 25 aH/m.



3.322

3323

3324

3.325

303

For a single current carrying Wire,B‘p - {r > a}. For the double line cable, with current,

2mr
flowing in opposite directions, in the two conductors,

uy/
B, =~ —-Qw, between the cables, by superposition. The associated flux is,
ar

d~a
! I
q,ﬁfﬂ‘?& drx1 E-‘l—;n d_ Egm 1 x I, per unit length
n r n a 1
-3
Hence, L= %Eh”!

is the inductance per unit length.

In a superconductor there is no resistance, Hence,

drI dd
La=ta
)
So integrating, I= %z 1“2—3
because AP= &, -0, Pp= na’ B, P;= 0
. d® 1, ., 12a4a"B
Also, the work done 1s,A-f§Idt-fId e 2LI =57
NS

In a solenoid, the inductance L = ppgn V= 1ty 5

where S = area of cross section of the solenoid, I = itslength, V= SI, N = nl = total number
of turns.

When the length of the solenoid is increased, for example, by pulling it, its inductance
will decrease. If the current remains unchanged, the flux, linked to the solenoid, will also
decrease. An induced e.m.f. will then come into play, which by Lenz’s law will try to
oppose the decrease of flux, for example, by increasing the current. In the superconducting
state the flux will not change and so,

Ea-— constant
1
Hence, {z 2 or, I= Io—lwzle(lmg)
L Iy
The flux linked to the ring can not change on transition to the superconduction state, for

reasons, similar to that given above. Thus a current [ must be induced in the ring, where,

‘gz na’B _ nalB
L 8a B 8a
pﬂa(In«b—-2) uo(ln?-z)

I=
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3326

3327

3.328

3.329

We write the equation of the circuit as,

for t 2 0. The current at £ = 0 just after inductance is changed, is
i= 1 %! so that the flux through the inductance is unchanged.

We look for a solution of the above equation in the form
i= A+Be™ "

Substituting C = —E JB=1~1,A= ;5;-

Thus, i= %(1+(n-1)e'"m/1‘)

Clearly, L d = R{I~i)=E~RI

d _
So, 2Ldt== E-Ri

This equation has the solution (as in 3.312)
B . -tR2L
i= 2 (1-¢ )

The equations are,

diy  di S
leIﬂdeI_g R(ll""ﬁ) !
H
LA SR S AT o BT G ]
Then, & (L1 L-L,b)=0 i L, J
or, L;i -L,i,= constant { AS
But initially at £= 0, i;= iy= 0 it |
17 " . ..._{j_._zww
s0 constant must be zero and at all times, & R
L= L, ‘2

In the final steady atate, current must ehviously be i) +i,= % . Thus in steady state,

. ng g -t S
“S K@ +iy ™ LT KRG ALy

1
Here, B= —;im_— at a distance r from the wire. The flux through the frame is obuained as,

Mo 7 uob a
@Iz—fzm bdr = 2nIln(1+1) I
1

a) ] —>
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ad I f har
3.330 Here also, B = > and D= pyu e .
a
B AN b
Thus, L= ™ In S

3331

3.332

The direct calculation of the flux &, is a rather complicated problem, since the configuration
of the field itself is complicated. However, the application of the reciprocity theorem
simplifics the solution of the problem. Indecd, let the same current { flow through loop
2. Then the magnetic flux created by this current through loop 1 can be easily found.

‘
Magnetic induction at the centre of the lcop, : B= Pol

2b
2 Mgt
So, flux throug loop 1, : &, = na’ pTS
and from reciprocity theorem,
2,
Homrai
Pr2= Po, Py 2

&
So, Lj;= o -l-pﬂzwz/b
i 2
Let E; be the magnetic moment of the magnet M. Then the magnetic field due to this
magnet is,
E?E[ EE]
The {lux associated with this, when the magnet is along the axis at a distance x from the
cenire, is

7

&=

3TN Py
4n [

" ,3]45‘1’ -,

a

ity 2 pd p Mer 1 1
where,®, = Z—J;P.,f e+ pz)szz 2 tx 3.3
]

3 %2
and (I)la —-—-———-——-“ﬂpm f_—LM d

_ MYl 1 X
2 x3 (x2 + 02)3/2
— Uy Py az

Ry g



396

3333

3334

3.335

When the flux changes, an e f, ~ N chid is induced and a current - NdD flows. The

dt R at
total charge g, flowing, as the magnet is removed to infinity from x = 0 is,
N N UyPpy
=g e 027
2aqR
or, =

If a current J fiows in onc of the coils, the magnetic field at the centre of the other coil
is,
iy a’f to ar
207 +aH? 207

The flux associated with the second coif is then approximately ue:ca4 2

as l>>aq.

4
Uoma

213

Hence, L=

dl
When the current in one of the loop is [, = of, an e.m.LL le——i-: L, a, is induced in
dt

the other loop. Then if the current in the other loop is /, we must have,

di
Ly—E+Rl= Lo

This familiar equation has the solution,

I L« _L_z s .
2= TR l1-e which is the required current
Initially, after a steady current is set up, the current is flowing as shown.
In steady condition iy = =, (= 5. i
R 07 R -
When the switch is disconnected, the current .
through R, changes from i}, to the right, to Hh
i to the left. (The current in the inductance WM
cannot change suddenly.). We then have the & @
equation, A
di, K l
L B—;—+(R+R0)£2=O. Sw
“ R o & e
This equation has the solution i, = iy e #*F¥* g
The heat dissipated in the coil is,
0= [i7Rai= 3R [ ¥ Ry
0 0
Ri2 x =t Lg 3ul
0T RYR,)  2R(R+Ry H
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3.336 To find the magnetic field energy we recall that the flux varies linearly with current. Thus,
when the flux is ® for current i, we can write ¢ = A i. The total energy inclosed in the
field, when the current is [, is

we [gia- [N %?—)-idr
I

-deq>f-fNAidi- %NAI‘*- %»Ncpf
0

The characteristic factor —;-appears in this way.

3337 We apply circulation theorem,
H2nxb= NI, o, H= NI/2xnb.
Thus the total energy,

W= -;—BH-znb-:rtaza w2a® b BH.

Given N, I, b we know H, and can find out B from the B ~ K curve. Then W can be
calculated.

b S
3.338 Fromﬁ H-dr= NI,
Hond+ 2 ba NI {d>>b)

Ky

NI
nd + pb’

Since B is continuous across the gap, B is given by,

Also, B= pipyH. Thus, H=

Beyp Fi();jy:%g, both in the magnetic and the gap.

2

B
xS x b
(a) jmm_m%_u_o______.__}&
wmagnetic Bz % 8 x nd nd
2 g
_ > o NI SN’I
) TheﬁuxlstBdS=Nuu9M,+gb _uobw{tﬁ’
Ro SN
So, L= -
b-i--ﬂl‘i',i
B
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The L, found in the onc way, agrees with that, found in the other way. Note that, in
calculating the flux, we do not consider the field in the gap, since it is not linked to the
winding. But the total energy includes that of the gap.

3339 When the cylinder with a linear charge density
A totates with a circular frequency o, a strface
current density (charge / length x time) of

i"—@issetu
T 2n P-

The dircction of the surface current is normal
to the plane of paper at Q and the contribution
of this current to the magnetic field at P is

dl?m MMJS where & is the Q

g ~» —y
direction of the current. In magnitude, dB adBL " %
f?x #1=r, since & is normal to 7 and the Y

dBn i

as

AN

—
direction of dB is as shown.

It’s component, d EH cancels out by cylindrical

symmetry. The component that survives is,

ﬂ f——-cosﬁ=——-—fd§2==uo

where we have used g’f__gzgs__q = d§ and f d Q= 47, the total solid angle around any

’
point.
The magnetic field vanishes outside the cylinder by similar argument.

The total energy per unit length of the cylinder is,
2
1 hw

2{h@ 2_ Mo 2,2 2
W, mpa (2;;) xma 81:“ A ow

3346 wp= %EOE 2 for the clectric ficld,

5= -.1—-}32 for the magnetic field.

w
Kg
1 .2 1 2
Th vt B €
us, S 5 g E°,
when E= B =3 x 10° V/m
VEg By
3.341 The electric field at P is,
P dme (d+1°Y7



3.342

3.343

3344

3.345

3090

To get the magnetic fieid, note that the rotating ring constitutes a current { = g w/2 x, and
the corresponding magnetic ficld at P is,

uoazi

B« —r |
f4 2(a2+12)3/‘2

2 2 a
Wg  EgigE gx2
Thus, —= - g
Y B ot (4 EXINT azi]

. (....zm)z / I p
Eolg \al e

w
M
or, o €0 g 007 @ /17
We

The total energy of the magnetic ficid is,
L @ iyave L[5 (E-
> (B-H)dv 5 B (!‘o jdV

1 — 1 —
-5 [ B Fav-3 [T B

2y
The second term can be interpreted as the energy of magnetization, and has the density
1i— «--:b
- “.I

{a) In scries, the current 1 flows through both coils, and the total c.m.f. induced. when
the current changes is,

dr Ldl
AL
or, L'=2L
(b} In paraliel, the current flowing through either coil is, %and the e.m.f. induced is
1 dl
-L (2 dt )
1

Fquating this-to - L' dI, we find L' = EL .

We use L, = u‘,nlz V.L,= ;.tonsz .
So Lig= ponyn, Ve VL L,

k)

The interaction energy is

e A e L el
=£f§ﬁw

Hcre, it B is the magnetic field produced by the first of the current carrying Icops and
Bz, that of the second one, then the magnetic field due to both the loops will be B +Bz.
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3.346 We can think of the smaller coil as constituting a magnet of dipole moment,

3347

3348

3349

Pp= 7 atr 1
Iis direction is normal to the loop and makes an anglc 0 with the direction of the magnetic
field, due to the bigger loop. This magnetic field is,

(799}
B,= 542

2b
The interaction energy has the magnitude,

Mol dy,
| W= S R4 cos 6

Its sign depends on the sense of the currents.

(a) Thexe is a radial outward conduction current. Let Q be the instantaneous charge on
the inner sphere, then,

jxdnrzw -—d-Q of, ;: 1L L

d Tans "
> aD_d(Q s\ _
On the other hand j, = > dr (41”2,-) j
(b) At the given moment, E= w._ﬂma.;
dme er
and by Ohm’s lawj = g.. ___.9._.._2.;
P dmezepr
Then, E, —q 3
4neuspr2
and 55 ;:-d&"’,_ 9 deczosG'n 9.
438059 r E4E P

— —»
The surface integral must be -ve because j, being opposite of j, is inward.

— P
Here also we sce that neglecting edge effects, j,« —j. Thus Maxwell’s equations reduce
i Py - —p
todiv B= 0, Curtl H= 0, B = u H
. e
A general solution of this equation is F = constant = B, - B, can be thought of as an
——
extrancous magnetic field. If it is zero, B = 0.
Given f= [ sin 7. We see that

. Ay . aD
Jmogsino= —jy= -

L

g, 8

I
o, D= —-5"5 cos o, so, E, = is the amplitude of the electric field and is
®

TV/cm



401

3.350 The electric ficld between the plates can be written as,

3351

33352

v, . v
Ew Re—2=e'®! instead of ~= cos of.

d d
This gives rise to a conduction current,
o

£o
7 V,.e

J.= 0E= Re
and a displacement current,

V., ;
m
euut

Ja= %?»- Reegyeio y

The total current is,

Jrm -Y&'-""ch+(eoem)2 cos (@ £+ o)

where, tana= on taking the real part of the resultant.

£ E W@
The corresponding magnetic field is obtained by using circulation theorem,
H2xr==ar Jr

v
{"“"'"“VUz-r(sOa w)?

of, i = H cos (ot + a), where, H, = o

Inside the solenoid, there is a magnetic field,
Be pynl sinot
Since this varies in time there is an associated electric field. This is obtained by using,

fﬁ E’dF'-w—g;fF-d:S?
¢ s

For r< R,Z:rcrE-—ii-nrz, of, E= -—%{
For r>R E= ~ E—I—{i
2r
The associated displacement current density is,
. 3E - Br2
Ja= 009" | e, B RY2 r

The answer, given in the book, is dimensionally incorrect without the factor g,

In the non-relativistic limit.
A
4me, r
(a) On a straight line coinciding with the charge path,
E V 377 it
el A X 21T ing, &L= .
Ja= BTG T An { r s/ ]’ (Hsmg, dt v.)
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1353

3354

al 2qv
But in this case, F= —v and v—= ¥, 50, Ja= *1-3-
r 4y

(b) In this case,s = 0, as, 7.L 7. Thus,
[
4 dxr
We have, E, = wmmnwgm«qu
¥
2 4x £, (a +x2)

then } = —a'p—= £ QE_’
T a Cat 4n(d+x)

This is maximum, when x= x, = 0, and minimum at some other value. The maximum

m(az_zxz)

displacement current density is

; v
Voot ™ o

. 8y
To check this we calculate -gx-*;

f. L[ @+ )= 52 -24) ]

This vanishes for x= 0 and for x = \/ -;- a. The latter is casily shown to be a smaller
local minimum (negative maximum).
We use Maxwell’s equations in the form,

when the conduction current vanishes at the site.
We know that,

ds-r

f E dS - 41:20 T
4mof aQ 3—38—021:(1 ~ c0s 8),

where, 2r (1 - cos 8) is the solid angle, formed by the disc Jike surface, at the charge.

Thus, ff Bdr= 2ua3--;-p1,q-sine-9

On the other hand,x = ¢ cot©

differentiating and using c;x = -y,

v= qcosec’ 00

Bogvrsind

Thus, B bd ---"Z—J;-;:Sm
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3.356

3.357

3.358

403

X
This can be written as, E’ = M-(-"gﬂ
4xr
= VX F
and H=-1- 5~ (The sense has to be checked independenty.)

T 4n ¥
(a) 1f B= B (), then,

Cutl E-= =98 = 0.
o

R
So, E cannot vanish.
. i o
{b) Here also, curl E = 0, so E cannot be uniform.

{c) Suppose for instance, E= & @

—
where @ is spatially and temporally fixed vector. Then -%= curl E= 0. Generally
g

speaking this contradicts the other equation curl ff = -aa—?- = 0 for in this case the left

hand side is time independent but RHS. depends on time. The only exception is when

« —e
f (¢} is linear function. Then a uniform field E can be time dependent.
b

. 7 D -
From the equation Curl H ~ il
We get on taking divergence of both sides
% div D= divj
-5 AV D= divj

- . TR ap
But div D= p and hence div j + P 0

From fom m%f-

we get on taking divergence
a3 .
Q= «—~divE
. at
This is compatible with div B= 0

A rotating magnetic field can be represented by,
B = Bycoswt; B, = Bosinmt and B,= B

Then curl, E'. - }?,{3_
ot

, —(CuriE’)xs - w By sinwt= —wB

So 'y

- (CurlE'.)y = wBycos wt= wB, and - (Curlf),a Y]
Hence, Curl E. = - D% F,

iy
where, W= e w,.
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3359

3360

3.361

3.362

Consider a particle with charge e, moving with velocity v, in frame K. It experiences a
™
force F= evx B
In the frame K', moving with velocity ¥, relative to K, the particle is at rest. This means
faiad
that there must be an electric field E in K, so that the particle experinces 4 force,
B i gy —
Fm eE'a Fuevx B

-, -
Thus, E'm v'x B

Within the plate, there will appear a (v §' ) force, which will cause charges inside the
plate to drift, until a countervailing electric field is set up. This clectric field is related to
B, by E= eB, since v & B are muiually perpendicular, and E is perpendicular to both.
The charge density = o, on the force of the plate, producing this electric field, is given
by

Em -S— or o= guv B = 0-40 pC/m*
0
Choose @ 11 B along the z-axis, and choose 7, as the cylindrical polar radius vector of
a reference point (perpendicular distance from the axis), This point has the velocity,

gyl
Ve XF,

and experiences a % g’ ) force, which must be counterbalanced by an electric field,
g — w — TR
Ew ~{@xr)xBw ~(0-B)7.
There must appear a space charge density,
p= gydiv Ew —.2%6’-3, -—8pC/m3

Since the cylinder, as a whole is electrically neutral, the surface of the cylinder must
acquire a positive charge of surface density,
B 2
2¢p(w-Blna
+ e e ——————————

B 4 2
Tna gga - B = +2pC/m

[ 3

In the reference frame XK', moving with the particle,
i

A A
4u£0r3

— b d e
B « B-vgxE /*= 0.
Here, 3{; = velocity of K7, relative to the K frame, in which the particle has velocity v.

Clearty, 3;' = v, From the second equation,
s

i et el —
Fo BE . g L BT oo @)
[+
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3.363 Suppose, there is only electric field E‘: in K. Then in X', considering nonrelativistic velocity

— i
PE = E, E*L_ _vsz,
< iy
So, E B =0
In the relativistic case,
i i — el
Ey= B, By=B= 0,
. o= EL ‘Ef - ""'i’—be/Cz
L L
ViV V1
P — — — i
NOW, E:-B= E’a'B’FE'l‘E"L 'B’.E. - 9, since

E, B, =-F, (F%E)V(1~v/*)= ~E, - GXE, )/ (1~-‘C’2-2—)= 0
3364 InK,B = bLE"E o constant.

X4y R
i e X i ;—’

In K, EE=vxB=bv = by =
Ary VP

A A
The electric field is radial (F= xi+yj ).

= S O
3365 mKE=a— r=(xi+yj)
¥ —
= VxE arxv
In KEB=-122.
o ¢ 2@

The magnetic lines are circular,
3.366 In the non relativistic limit, we neglect v2/c* and write,
F,- E B~ B
2 Sl N e o T
E,wE +vxB[B B -vxE/c

These two equations can be combined to give,

e il — — —
E=E+vxB,B = B-vxE/¢
3367 Choose E in the direction of the z-axis, E= {0, 0, E). The frame K’ is moving with velocity

Ve (vsina, 0, v cos o), in the x ~ z plane. Then in the frame X',

.
Ey=m Eg By= 0
ford —
= E, o ~VxE/c
E = —==2=—8

Vi-de * Vi-vsa

The vector along vis e= (sin o, 0, cos o) and the perpendicular vector in the x - z plane
is,

- .

f= {~cos a,0,sina),
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= —» . rd
(a) Thus using E= Ecosa e+ Esina f,

Esina
E = Ecosa and By w ———meres,
I ! Vi~V
22
~pBcos  a tan o
So and tan o' =~
? Vit
, = xE/E
®) By= 0, By = o=y
1-v/c
B BEsina

ch-—Bz

3.368 Choose 5’ in the z direction, and the velocity v (vsin a, 0, v cos @} in the x - z plane,
then in the XK' frame,

E-E-0_ | By=5
Ey&* vx B E—gl - B
1-v/e? 1-v2/¢2

_ a2 o2
B=B L CO: 2 tana = —ane
1-g 1-p?
3369 (a) Wesccthat, E B =E, By+E, B,
- - “‘“’__{;'x_‘
L EE) {2
= By By+ 2
1
62
— E,-B,-@xB) - GXE
"E“Bﬁ‘!' 1.7
1-v/c
w> s E, B, ~(%B, ) (FXE, )/
= E. -B,+
18y 2
1--3
iy iy e €
But, AxB-CxD=A-CB-D-A-DB-C,
( N
CZ
i — il Pt ol
50, E B E“ Bu E,i. B.L 3 =FE-B
-2

() E? - B u E’" - B'?+E'2--C B?
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1 -
2
= E/-c"Bj+ 1 3 [E2-5232+(vx3 ¥ -—12-( xEl)z]
v
1 =
C2
v
2 2n2 2 _ 2R Vi g2 242
aEﬂ—C B“ VQ’{E B ]( cz)—-E"-CB,
1-7
c

i

3.370 In this case, E-B- 0, as the fields are mutually perpendicular. Also,
2

E B uw —20x 10( ) is - ve,

Thus, we can find a frame, in which E'= 0, and

Sa— " 7
B’-—i— 2B - BV1~~§EE=0-20\/1-( 4x10 ) - 015 mT
[

3x105x2x107*

3371 Suppose the charge g moves in the positive direction of the x-axis of the frame K. Let
us go over to the moving frame K, at whose origin the charge is at rest. We take the
x and x' axes of the two frames to be coincident, and the y & y' axes, to be parallel,

- 1 _gr
In the K’ frame, E = T
dney o

and this has the following components,
, 1 ¢ oo 1 @
m ——— E bl "
E. dme, 707 Ameg 0
Now let us go back to the frame K. At the moment, when the origins of the two frames
coincide, we take ¢ = 0. Then,

x= reosQ=x Vl—mé- ,y= rsinf=y
[
Also, E,= E, E = E [V1- /&

!

From these cquations, ¥ = r (11 ﬁ;m 9

7w —2 1 a2t y

E "4thgr3(1_ﬁ2sin2e)3/2[(1 5} (xlé'm})]
grl1-8)

4mey r 1~ BZ sin” {:.’)3/2
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3.7

3372

3.373

MOTION OF CHARGED PARTICLES IN ELECTRIC AND
MAGNETIC FIELDS

Let the electron leave the negative plate of the capacitor at time = 0
dp 9. 4a
As T ..
¥ Ex dx: 3 E l I L]
and, therefore, the acceleration of the electron,
ek _ea dv_ oea
m m 4t ml
v 4
ea 1 ea
or, .!;dv- l J tdt, or, vm 3 ;;itz (1)

But, from s = f v dr,

Putting the value of ¢ in (1),
2

2 1
243 3
v Led (6ml ) - (galer_ 16 ks,
ea 2m

The electric field inside the capacitor varies with time as,
E= at
Hence, electric force on the proton,
F= eat
and subsequently, acceleration of the proton,
edf
W= —
m

Now, if t is the time elapsed during the motion of the proton between the plates, then

t= i, as no acceleration is effective in this direction. (Here VII is velocity along the length
Vi
i
of the plate.)

dv

From kinematics, —dt—i- = W

v, t
50, fdvl -det,
g g

(as initially, the component of velocity in the direction, L to plates, was zero.)
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or . ”fgei_ ea I?
L m2n 2m
[} I
4 eal
NDW, fang = _.'-L—=.._m
v

eal?

2
zm(Ze
m }

2
e T vy (%—:X) , from energy conservation.

N
4 2 eV?
The equation of motion is,
dv dv
" v o (Ey— ax)
Integrating
%vz - ;% (Eogc - %axz) = constant.
But initially v = 0 when x = {, so “constant” = Q
Thus, Vo gﬁ(on—3~ax2)
m 2

, 2E,
Thus,v = 0, again for x= x_ = —
The corresponding acceleration is,

ZANN'] )

From the law of relativistic conservation of energy

2
My ¢

—m — e Ex = ?,
mz;ex myc

as the electron is at rest (v = 0 for x = 0) initially.

Thus clearly T= eEx
2
m,c
On the other hand,¥1 ~ (v2 /) = mmmi(—}“mm
myc” +eEx
\/( 2, e Exy? 24
or v_Yimc+e XY~ mgc
’ c g c* + eEx
(mocz+eEx)dx

of, cl= f cdi = f
\/(mg P eEJc)2 - m?‘; ¢

409
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.1 f dy _"}“
2¢E 1fy_m§c4 el

The “constant” = 0, at t= 0, for x = 0,

\/(mc ¢ + eEx)* ~m? c* + constant

So, ctm -Elii.-—\/(mocz + ei‘?.'_wc)2 - mg ¢t

Finally, using T'= e¢E x,

_ VI(T+2myc?)

cekE ty= T(T+2mec2) or, I

ekc
3376 As before, T= eEx
Now in linear motion,
d mgyv mgw myw v
— = + -y w
i vE Vi-vwd A=V
my (T +myc®y

= W 5 w= ek
1 =/ my c® ’

eEmyc®  oF r
So, wWa s — 1+
(T+mycy My mgc

3.377 The equations are,

m
af "% 1.0 and Lot Na ek
dt(V1-67/) V1 v
H o wnt !
ence, — e = CONSHANL =~
Vi Vi-(3/c)
Also, by energy conservation,
mo ":2 mo Cz E
= +eEy
Vi-odd Vi-02d)
Dividi Vo &g My ¢
ividing v, = , g =
&y + eEy Vi - (/A
m, ggtekl
Also, (.)z vl : 7 :
vi- (v /¢ c
Thus, (eg+eEy)v, = ¢® e E t + constant,

“constant” = 0 as v, = 0 at t= 0.
Integrating again,

eoyi»%eEyza« %czEt2+constant.
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“constant” = 0, as y= 0, at = 0.
Thus,{ce E r)2 - (eyE)2 +2¢e¢Eyn eg - a%

or, ceEt= V(e, + eEy) - €
or, gt ey = Vel + P B2 r?
Yo o ekt

Hence, R Y ——
Vea+c* EE*e? Vel+c?? B2 42
v ekt
and tanf= L= Vi (vi/ch.
W

YV, MY,

3.378 From the figure,
sino = %a«: 498

my

As radius of the arc R = g’% + where v is the

velocity of the particle, when it enteres into
the field. From initial condition of the problem,

1,2 V¥
qv Fmv" or v -

Hence, sin o = _...‘EE?____: dB V-i—~

\/ﬁ 2mvV

n
and o= sin~! (a‘B V EM%MI} )a 30° on putting the values.

3.379 (a) For motion along a circle, the magnetic force acted on the particle, will provide the
centripetal force, necessary for its circular motion.

. m? eBR
ie. —=evB o, v= —
R m
and the period of revolution,l = n_2nR_Znm
(0] v eB
dp =
(b} Generally, —d-? = F
& d__mV my v m AT

But,

a” d‘V1-(v’/c2) ) Vi-(#/ D * (1-(vz/cz))3”2 ¢t

. — e
For transverse motion, v-v= { so,

. e 2
d mg v m, v
2P — here.

& i- P Vi-GPicd) 7
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Thus M“w’fg'xz""m— Bev or v/e L
’ rVi-04¢h) ’ Vi-02/c) g €
y Ber
or, -~
© VBZPrmid
2am
Finally, T= 2%« LI, 2 R P

v BVi-AE  Be

3.380 (a) As beforep= Bgr
(b} T=\/cp+m0c \/cszqzr +m
¢
r [1 +(myc ,’}’5‘qwr)2 ]
using the resuit for v from the previous problem.

3.381 From (3.279),

(c) w= Er-=

2amy ¢ o
= Ty= ——— (nonrelativistic),
c“eB
Here, my c2/ 1-v/ = E
Thus, 3T = 2—"‘—?—, (T= K.E)
&’ eB

8r T 2
Now, = , 80, T=mm,c

T, —-‘Tmﬂc My

1382 7. oy _1_,,,,,2

(The given potential difference is not large enough to cause significant deviations from
the nonrelativistic formula).

Thus, v= V%EZ
m
\ /ZeV A /ZeV .

So, v, = ——— 08, V= e ST CL

i m m

m v my

ER i
Now, = Bev, oI, r= Bo
and T= 2:cr= 2mm

Pitch p—vT- zmvzev\cosa-Zn\/ cos o
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3.383 The charged particles will traverse a helical trajectory and will be focussed on the axis

3.384

after traversing a number of turms. Thus

i_ nuz:rr.m‘ (n+1)2:rm
Vo 98, 4B,
So n_nt 1 - i
i B, B, B,-B,
I 2nm
Hence, s
Yo Q(Bz_Bz)
? (2 7 1
or, 5 X 3
2qVim” (B~ By (a/m)
2
or, g 8x°V

m 7 (8, -B,)

Let us take the point A as the origin O and the axis of the solenoid as z-axis. At an
arbitrary moment of time let us resolve the velocity of electron into its two rectangular
components, 'v'tralong the axis and ¥, to the axis of solenoid. We know the magnetic

force does no work, so the kinetic energy as well as the speed of the electron fﬁi will
rcmam constant in the x-y plane. Thus v’L can change only its direction as shown in the
Fig.. v" will remain constant as it is parallel 1o B

Thus at r = ¢

v, = ¥, COS W = v§in o cos wi,

Vv, = v, sitwf = vsinasinwe?

eB

and v, = vcosa, where w = ?n—

Asatt =10, wehave x = ¥y = z = 0, 50 the motion law of the electron is.

Z= veosot
v sin o

sinwt

v §in o
y= (coswt-1)

(The equation of the helix)

On the screen, z=1 s0 f= .
cos O
2.2
2v°sin” o wl
Then, r2=x2+y2=-----—i---- 1 ~cos
vCcos a
2vsina wl

= stina sin
eB

2vcos o 2mycos o
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3.385

3386

Choose the wire along the z-axis, and the initial direction of the electron, along the x—axis.
Then the magnetic field in the x - z plane is along the y-axis and outside the wire it is,

I
B——i—‘L (B,= B,= 0, if y= 0)

The motion must be confined to the x ~ z plane. Then the equations of motion are,
d
G e, B,

d(mv)

= +ev B

Multiplying the first equation by v_ and the second by v, and then adding,

dv, dv, 0
Ik b A
*dt  tdt
or, v + vy -vg say, o1, v,= Vv%«vf
dv, e ot
2 o
Then, TR IR L ¥ A T R
* dy m 0 F2ax

or, _-—— . B R
? 2 2 2mm x
Vo= Yy
le
. NI I x
Integrating, Vo=V = In~—
grating 67" " 2mm @
on using,v, = vu, if x= a (i.e. initially).
Now, v = 0, when x= x,,
Ko le
$0, x = ae"’”, where b=
2 wm

Inside the capacitor, the electric field follows a %law, and so the potential can be written as

LYinr/a E= -V 1

" Tnbla Inb/ar

Here r is the distance from the axis of the capacitor.
ml gy 1 2 qV
Alse, r " imbjarr ™ T inb/a

On the other hand,
mv = g Br in the magnetic ficld.

v 4. v
Thus, V= Brinb/a and m Br Brmp/a)



3.387 The equations of motion are,

3.388

dv, dy dv
ZE . ikl L
mdt g Bv, y me qE and m T qv, B
These equations can be solved easily.
i gE g9E
First, v, = Tn—t, Y= —f-m—t
Then, v2+v? = constant = v} as before.

In fact, v, = vycos o and v, = vysin ot as one can check.

Integrating again and using x= z= 0, at t= 0

Yo |, Yo
x=—sinwf z= — (1 - cos wi)
© w

Thus, x=z=0fort= tu=n23‘-
o
2 2
; - qE 2=m 2 2 2=x mEn
At that instant, y, meqB/mxn qu/m qu
v
Also, tan o, = f—,(v,_= 0 at this moment)
¥

my, my, By
= 9 #Woxgg‘x 1 = ! .
gEt, gE m 2mn 2mnEn

The equation of the trajectory is,

Y, Y _gE 2
X = —sin W, Z= 5{1 - €08 W), y= o t” as before see (3.384).
Now on the screen x = [, so
. wl . w10l
SINOi= — Or, W= S " ——
Yo Vo
At that moment,
2
y= _ﬂ,q_E.._,f(sm 1t )
2m y 29B%
50, ol sin
Em
v
and Z= ~9~251n o Imn—@i
o 2
1l 10l 9By
-Itanz[sm ] Itan E
For small
2 2 A
9B’y ~12Yy L2
% 2mE (“’“‘ 1) "7
or, y= 2mE £ isa parabola.

gB* I*

415
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3.389 In crossed ficld,

3.3%

339

el = evB, so v=£

B
] E miE
Then,F = force exerted on the plate = cxmp= g

When the electric field is switched off, the path followed by the particle will be helical.
and pitch, Al = v" T, (where vn is the velocity of the particle, parallel to B, and T, the

time period of revolution.}
@ veos (90 -~ @) = vsing T
m 2n
as Tm == 1)
@ = ) \
Now, when both the fields were present, gF = quB sin (90 ~ ¢), as no net force was effective
on the system.

= VSin @

E

= 2
or, V= Bcos P @
From (1) and (2) Al s £2xm BaRg= 6cm.

’ B 4B
When there is no deviation, — .
~gE= g(vx B}
or, in scalar from, E= vB (as VL F) of, v % (1)
Now, when the magnetic field is switched on, let the deviation in the field be x. Then,
X = i L__VB tz,
2l m

where ¢ is the time required to pass through this region.

also, t= £
v
2 2 52
1(qB\(a\  1ga B 2
Thus * Z(m)(v) 2m E @
For the region where the field is absent, velocity in upward direction
- (ﬂ‘:ﬂ) N )
m m
Now, Ax—x= 2‘_12‘:
m
2
. 3980 )
p— when ¢ o= (4)

From (2) and (4),

Ax_g_iasza _q_asz
2m E m E
q 2F Ax

ot,

m G B (a+2b)
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3.392 (a) The equation of motion is,

r anfi _.—b
—c;t—i= (E+vxB)
— — —
Now, vxB= {x y z|=iBy-jBx
6 0B

So, the equation becomes,
dv, 4Bv, by gE g8, 4Py
dt m d m m* dt
Here, v, = x, v, - ¥, v,= z The last equation is casy 1o integrate;
v, = constant = 0,
since v, is zero initially. Thus integrating again,
z= constant = 0,
and motion is confined to the x — y plane. We now multiply the second equation by £ and
add to the first equation.

E=v+iv,

we get the equation,

E#' E_. =
2= g ing o

g8
g
This equation after being multiplied by e'“can be rewritten as,
and integrated at once to give,
£m %+Ce-im—iu’

where € and o are two real constants. Taking real and imaginary parts.

v, = %+Ccos(mt+a) and v, = - Csin (wf + o)

. E
Since v, = 0, when ¢= 0, we can take @ = 0, then v, = O at £= 0 gives, C= -3

and we get,
E E .
v, = E(l - cos wt) and v, = g Sin wt.
Integrating again and using x= y = 0, at 7= 0, we get
E sin oo E
x([}: E(t.--*‘(;‘—*), y(t)ll mB(i'"COS(Dt).

This is the equation of a cycloid.

(b) The velocity is zero, when ot = 2 nn. We sce that
2

V- ;§+»§w (g”) (2 -2 cos wr)
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3393

or, Ve ds 2E sin &
! dr B p

The quantity inside the modulus is positive for 0 < wz < 2 . Thus we can drop the modulus
and write for the distance traversed between two successive zeroes of velocity.

4F we
S= mB(l-—cos 2)

Putting of= 27, we get

_SE_smE
wB qu

(c) The drift velocity is in the x—direction and hes the magnitude,

E E
<y >= < E(l-cosm:)>== B

When a current [ flows along the axis, a magnetic field B = ;;; is set up where

p2 -+ y2. In terms of components,

Boly Mo Ix
B--—-——-—-—-«-f,B =---—-—§andB = Q
* 2np Y 2xp z
Suppose a p.d. V is set up between the inner cathode and the outer anode. This means a
potential function of the form
@ = lnp/b
v na’b’ a>p>b

TN
as one can check by solving Laplace equation. ‘-{-"
The ¢lectric field corresponding to this is, ; 2
Em el Eom s ,E,= 0. i >
p°lnalb plna/b l__,
The equations of motion are, Eé
2 o, le|Vz ief i‘ol f
dt pzina/b 25 p? i
|
-4
2 by, |eIV3’ L Lelod -y |
dt p? hm/b 27 p?
d !4
and dtmv--iel 2(xx+yy)--]e|-2——dti p

(~]{e}) is the charge on the clectron.
Integrating the last equation,

! -
my, = ~lel Sooip/a=mz.
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since v, = O where p= a. We now substitute this z in the other two equations to get

i(lmv3+lmv§)

drt 2 2
2
]elvﬂlﬂigﬁw In /b XXty
Ina/b m |2=x p 92
elv |ef 2
|l lePiml ol 1 d
me m 2n b 2p*dt
b
2 2
JlelV el fmd)™ pld o
me m 2n bldt" b
b

Integrating and using Vo= 0, at p= b, we get,

}.,mvz,, - 181V1n£__}..,lt_,12 ,‘f,?_....z me
2 mg b 2m Zn b
b

The RHS must be positive, for all @ > p > b. The condition for this. is,

2
z}-‘-!f..—i- -..}fg-{ ]ng.
2 ml\2n b

This differs from the previous problem in (2 +=b) and the magnetic field is along the
z-direction. Thus B, = B,= 0, B,= B

Assuming as usual the charge of the clectron to be — ] e |, we write the equation of motion

d lelV, . d lelV, :
5. zmg—]e[By,dtmvya 21n9_+leIBx
png PiRe
and E;mvzzo‘» z=0

The motion is confined to the plane z= 0. Eliminating B from the first two equations,

d(}"mv;)_‘ le|V xx+yy

dr|2 Inb/a p?
1 5 Inp/a
o s = el Vi

so, a8 expecied, since magnetic forces do not work,

VY s
m
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3.39%

On the other hand, eliminating V, we also get,

d ..
Em(xvy-yvx)u fe|B (xx+yy)

ie. v, -y = L—-L- p? + constant

The constant is easily evaluated, since v is zero at p = a. Thus,

eiB, 2
(- = LB (-5 0

At p=b, (xv,—y)s vb
Thus, vb> L%m!—l-’i(bz-az)

or pe 2mb (f7[e[V 1

’ b -a m jel
or, B ——x % 3 2mB
b -a le]

The equations are as in 3,392,

dv, gB dv, qE - gB dv
X ko, Lim 98 —z
7l TR - cos f Ve and &
with wa%,%-vx+ivy,weget,
E
g2= i“ﬁ"m'mcosax—-iwg
or multiplying by ei“",
. E ,
2 €e™™)= izZ0E ™ +1)
or integratin Ee“‘"- -—~e2'""+'§-'5£wt
or, §-= (e‘“"+2tmte“‘")+€e‘”‘
. "
since %*Oatraﬂ,Cm-—“B.
Phaad. N P P
Thus, E t5g smmtﬂ—iﬁmte
Em f d m Em r ¢
or, Y= Sgorsinof and v, = 5o sinf + 5 0f C0S ©

Integrating again,

a . a .
X - 5 (sin wf - wi cos we), y = o= sin wf.
2w 2w
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9E,
where a= T and we have used x= y= 0, at t= 0.
The trajectory is an unwinding spiral.

3.3%6 We know that for a charged particle (proton) in a magnetic field,
m?

-*;_--:Bev or mv = Ber

But, m”gﬁ:
m
1 5 1 3
Thus E M= Smo .
So, AE = mo’r Ar= 475 vimr Ar

On the other hand AE = 2 eV, where V is the effective acceleration voltage, across the
Dees, there being two crossings per revolution. So,

Va 2 vimr Ar/e

2
3397 (a) From Ef:—= Bev, or, mv= Ber

BerY 1,
and T S 5 Y 12 MeV
2n 2nr
(b} From Pl
v _ 1T
we get, foin = 3o Vo 15 MHz
3.398 (a) The total time of acceleration is,
1
t= 5o,
where n is the number of passages of the Dees.
222
But, T= neV= %ﬁw
o po Ber
" 2mV
S tm 5 szerz_nBrz_“nzmvrzmso s
® TeBim VT W T eV #
. . 1
(b) The distance covered is, § = 2 Vo' S

But, W= V%Y*\[;,
1/ eV .‘/ eV 1/ eV 2 3/2
S0, = 2mv? 2ﬁ= 2mv? f\/;dnw vt 3
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But 3232 2 anm v
i Y 2eVm eV
2
Thus, 5~ i%‘évfi w 124 km

2nr,
3.399 In the nth orbit, — =0 Ty= ; We ignore the rest mass of the electron and write
n

v,= c. Also W= cp= cBer,

Z2aW n
Thus, =
Bec®? v
or, = an “;v -G
Bec

3,400 The basic condition is the relativistic equation,

2 My
LA = Bgv, or, mv= . — Bgr.
r 1~ v3/é
Or calling, w=22
m

W, B

we gel, @ = e g = =4,
1 wg 7 My
+
2

is the radius of the instantaneous orbit.
The time of acceleration is,

"22 2“'24&

N is the number of crossing of either Dee.

But, W = m, e éW’

Jcmec AW,
So, t 3

gB ¢ 29B¢
4 N(1V+1)::AW - N2 AW
‘”c 4 gB ¢ 44Bc

there being two crossings of the Dees per revolution.

= N~ s (N>>1)

VN__ c ot AW
Wy ® aN" 2q Bc

Also, re Iy N
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Hence finally, W= oo
V), 28, oW
mic? 4q B
Wy Wy
\/ 2 2 Viear’
1AW dgB,
dmyct RAW
qB AW
am 33
wmyc

3.401 When the magnetic field is being set up in the solenoid, and electric field will be induced
in it, this will accelerate the charged particle. If B is the rate, at which the magnetic field
is increasing, then.

xrzéw 2arE or Em «12-1'3

a1 gBr
Thus, m— 2qu, or V= o

After the ficld is set up, the particie will execute a circular motion of radius p, where
mv=Bqgp, orp= }2-1'
3402 The increment in energy per revolution is e, so the number of revolutions is,

W
N= ed

The distance traversed is, s = 2N
3.403 On the one hand,

|

P o

LY. N
dr Ly dt

2nr

B

- [ 2w By ar
0

On the other |
p= B(r)er, r= constant.

dp_ . d :
so, Pl B(r)m erB(r)
Hence erlli(r)- —g—:n:rzi<8>
? 2nar dt
; id
So, B()= -2-5,;<B>

This equations is most easily satisfied by taking B (rp) = —;—< B>

F,

o
3.404 The condition, B (rg) = %< B>= :,1,: f B- 20 dr /e
0
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o

or, B(r)~ —:5 | Brar
%9

This gives 7,
In the present case,

Bo-—ar%- -fgf(Bwarz)rdr— %(Bo-%arg)
0

3 1 \/?.E
or, 4ar(2,a 280 or rpm= 3

3.405 The induced electric ficld (or eddy current field) is given by,

E() = = monr’ () B () dr'
Hence,
¥
dE 1 d , dB (r)
dr-—znrzdtQZurB(r’)dr'-r 7
1d dB r)
" ra<BtTg
This vanishes for r = r, by the betatron condition, where r, is the radius of the equilibrium
orbit.
3.406 From the betatron condition,
1d B
2d.f<B>- & (rg) = A
Thus’ "'i‘( B>= %
and dd _  2d<B> 21°B

7 R YR
So, energy increment per revolution is,
42 _2nreB

ar T A
3.407 (a) Even in the relativistic case, we know that : p= Ber

Thus, W= Vpiemict ~myc?= myc (V1+(Ber/mdcz~—1)
{b) The distance traversed is,
w w WM
ST an’eB/A: Ber ’

or using the result of the previous problem.




